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problem: minimize f(x) over all x € R"

applicable numerical methods depend on the property of f
smooth objective function (continuously differentiable)
non-smooth objective function

gradient-based methods used in ML: concern issues about flat regions or
differential curvatures of f
mini-batch optimization: f is a sum of functions of the same form
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assume that f has n + 1 continuous derivatives

f(2) can be expressed by Taylor series about z

@GP @ S - ot

f(z) = f(@)+f'(2) () T

5] nl (n+1)!

En(z)

where E,,(z) called the remainder (hold for some £ between z and z)

multivariate case: f:€ R" — R

Ist-order: f(z+ Ax) = f(z)+ Vf(2) Az + (1/2)AzTV2f(6)Ax
2nd-order:  f(z + Az) = f(x)+ Vf(z)T Az + (1/2)AzTV? f(2) Az + remainder

Taylor approximation is the expression without the remainder term
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assumption: f is twice continuously differentiable
first-order necessary condition:
if 2* is a local minimizer of f then Vf(z*) =0
second-order sufficient condition: if Vf(2*) = 0 and V2f(2*) = 0
then z* is a strict local minimizer of f

local minimizers can be distinguished from other stationary points by examining
positive definiteness of V2 f
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flz) = 3ot + Lad + 2mywo + 223 — 20 + 9

the necessary condition for stationary points is

[.2
x4 220 o e
Vf(ﬁ)—_2$l+$2_1]—0 = u=(1,-1)orv=(2,-3)

the Hessian matrix of f is

=[] e

V2f(v) = 0, so v is a local minimizer

V2 f(u) is indefinite, so u is neither a minimizer nore a maximizer of f

f has neither a global minimizer nor a global maximizer since f is unbouded as
1 — o0
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Example of local minimum
a surface plot of f(z) = 1z} + $22 4+ 22139 + $23 — 204+ 9
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f is unbouded and has a local minimum
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definition: f(0x + (1 —0)y) <0f(x)+ (1 —0)f(y) for all z,y and 0 <6 < 1

first-order condition: f is convex if and only if dom f is convex and

fy) > f(@)+ V@) (y—=z), Va,ycdomf

RHS is the first-order Taylor approximation is a global underestimator of f
if Vf(z) =0 then for all y € dom f , we have f(y) > f(x), that is z is a global
minimizer of f

second-order condition: f is convex if and only if dom f is convex and

V2f(z) =0, VYzedomf
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algorithms for unconstrained optimizations have the same iterative form

each method differs by the search direction Az(¥)
the choices of step size t;.
exact line search: optimal step size, i.e.,

tp = argmin f(z® + t, Az*)
>0
a fixed nonnegative value
a decaying sequence
inexact line search: the objective value is improved in some sense

all choices of step size must yield the iteration convergence; more details in Chapter 3
of J. Nocedal textbook
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initial sublevel set: Sy = { z € dom f | f(z) < f(©) } and assume Sy is closed

descent method: an iterative method has a descent property if

Fa®)) < f(2®)  (except when 2*) is optimal)

it implies that for all k& we have z(®) ¢ S
descent direction: acute angle between the search direction and —V f(z(¥)

£+ 1820) = f®) + 199 2+ O(2)
if Vf(z")TAz(*) < 0 then for a sufficiently small ¢, we will have

f(ac(k) + tA:U(k)) < f(x(k))
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search direction

~Vf(z)
when f is convex with the first-order condition: f(y) > f(x) + Vf(z)T (y — z)
F) = f(2) + V()" (y —2), Va,y€domf

the condition V f(z")T(y — z®*)) > 0 implies f(y) > f(z®)
for convex f, a search direction Az is in a descent method must satisfy

V(T Az® <0
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denote 2 := x + tAx (z is the current, 2 is the next iteration)

traditionally, choices of step length (stepsize, learning rate) are

exact line search: find ¢ that minimizes f(z + tAx)
backtracking (or inexact) line search: choose 3, € (0,1), initialize ¢ and check if

fx™) < f(x) + atVf(x)TAx

otherwise, reduce the step length by ¢ := 5t (this is called Armijo’s condition)
fixed step length: chosen to obtain a convergence
diminishing step length: for example, ¢, = 1/k which satisfies the conditions

o0 oo
tr — 0, Ztk:oo, Zti<oo
k=0 k=0

Jitkomut Songsiri 13 /38



Armijo rule: stepsize selection rule that is based on successive reduction
choose parameters 0 < o, 8 < 1 and initialize a stepsize ¢
compute 1 = z + tAx and evaluate f(z + tAz)

if the condition
fx +tAz) < f(z) + atVf(z)T Az

does not satisfy, then reduce ¢ by computing ¢ := (3t and repeat step 2)

N_;,,?T‘\LQ stepstze 2,0 b e iu%iysl;kfs(;e
t

| ~f

\ o +ta) )

oL bVl ax
(x<1)

LIS
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Conventional methods
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first-order methods: for continuously differentiable f
steepest-descent method
quasi-Newton methods
trust-region method
nonlinear conjugate gradient method
second-order method: Newton

first-order methods: for convex and Lipschitz continuously differentiable f
FISTA
Nesterov's second method
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steepest-descent
Newton /quasi-Newton
trust-region

nonlinear conjugate gradient
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V(=)
use the negative gradient direction

k) — _v f(x® e AL
Az = =V f(z'") /i\j/
k =

and a line search to determine the step size ¢(*) ,

the search direction has a descent property if Vf(a;(k)) #0
minimizing the approximation f(z®) 4 s) ~ f(z®)) + sTV f(x*)) is done via

L sV f(2®)
minimize 0l
20 ls|l - [V f ()]

which gives the solution: s = —V f(z(®) as Az(*)
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the search direction satisfies

(V2 f ()] Az = —v f(2®)

if Vf2(z(®)) > 0 then it is a descent direction
the Newton direction, s, minimizes the quadratic approximation of f

Vi® +5) ~ fa®) + ViahTs + %STVQf(x(k))s

classical Newton method use the step size of 1 and has a quadratic convergence
the cost of solving the linear system for Az(¥) is O(n?)
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the linear approximation of V f(z*) 4+ Az(*)) = 0 gives the Newton direction s

0=V/f(z® +Az®)) = Vf(=®) + V2 fa®)Azk)

ofty) > vfoas V(92
"\_’9

affine approxmaten

z*/ x J

(in the figure, zt £ 2D and z 2 £(#)
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approximate the Hessian at low cost, Hy ~ V f2(z®)) and Az*¥) satisfies
HpAz®) = —v f(z*)
these methods can propogate H,;1 to simplify the calculation of Az(*)
BFGS (Broyden-Fletcher-Goldfarb-Shanno)
s=a®) — gty = ViE®) - VD)
yy"  Hy1ss" Hy
yL's sTHy_1s

T T T
1 sy 1 YS Ss
Hk = <I—yTs>Hk_1 <I_yTs>+yTs

cost of the inverse update is O(n?) as compared to O(n?) for Newton

Hy = Hy1 +
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DFP (Davidon-Fletcher-Powell): solution is dual of BFGS formula

T T T

ys 1 sy yy
H,o= (1= Vgt (1= ) Y
g < sTy) kol < sTy) T Ty

(interchange the roles of y and s in the expression of H, ' from BFGS)
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trust a quadratic approximation of f(z(¥) + s) in region ||s|| < 0k

for each iteration, the method solves the subproblem for the search direction s

minimize  f(z®) + Vf(a®)Ts + 1sTV2 f(2(k)s
subject to ||s|| < dk

quadratic contour (step2)

\ \
\ |

an

quadratic contour (stepl)

0y, is updated by examining a reduction of f as compared to quadratic approximation
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the optimality conditions of the subproblem are
(V2f(@) + AD)s = =V f(2 ™), A — [sll) =0
(A > 0 is the Lagrange multiplier) and the method guarantees that
sl = 1(V2£ (™) + AD 7V f(a™)]] < 6

if §x is very large, A = 0 then s approaches the Newton step
if 9, — 0 then X\ must be large and dominate V2 f, which gives

1
s = —XVf(x(k)) (closer to the gradient step)

the idea of solving the step: (V2f(z(®)) 4+ AI)s = —V f(z*®)) was first proposed
by Levenberg-Marquardt (LM) for nonlinear least-squares problems where A is
called the damping parameter

both LM and trust-region methods are also called restricted Newton step methods
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conjugate gradient (CG) method for linear equations

motivated from minimizing (1/2)z” Az — bTx or solving Ax = b

converges in at most n steps (can be less if A has less distinct eigenvalues)
preconditioned CG: change of coordinates = By to make spectrum of BT AB
more clustered
nonlinear conjugate gradient method

extended to non-quadratic unconstrained problem
approximate a nonlinear f by a second-order Taylor series

fa) ~ f(z) = (1/2)2" V2 f(@)x + V(@) "z + 7

apply CG to f while modifying the minimization of f along conjugate vectors
well-known modifications: Hestenes-Stiefel, Polak-Ribiére, Fletcher-Reeves
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given a matrix A, a set of vectors {p;} are conjugate with A if

p?Apj =0, fi#£j

first assume that {p;} is known and f(z) = (1/2)z” Az — b"x

consider a trial point z = )", a;p;, it can be shown from conjugacy that
bl

p} Ap;

minimize f(z) = «a; =
z

meaning if we can represent the solution as an LC of {p;}, it can be found easily
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a specific type of unconstrained problem of the form
minimize f(x) := (1/2)[r1(z) + ra(2)? + - - - + r4(2)?]
Gauss-Newton method: apply the Newton and neglect a term in V2 f

r(z) = (ri(z),...,rq(x)), Vf(x)=J@) r(x), J(z)is Jacobian of r
Vf(2) = J(2)" I (z) + S(z) = J(2)" I ()
search direction: [J (2N T J (") s®) = — J(2*))Tp(2*)

the method has a global convergence

Levenberg-Marquardt method: replace the search direction equation with
[J (T J(2®)) 4 XE 1) = — g (2N T (2R

A*) is called damping parameter and updated at each iteration
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under the assumption that z(*) — 2* and f is generally nonlinear

methods convergence rate property
gradient descent linear first-order method
Newton quadratic second-order method
expensive for large scale problems
Quasi Newton superlinear first-order method
CG for quadratic n-step first-order method

CG for nonlinear f

global convergence

only require matrix-vector products
first-order method
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MATLAB: optimization toolbox
fminunc uses quasi-newton and trust-region

quasi-newton: requires description of f, uses relative optimality tolerance, relative
step tolerance

trust-region: requires description of f and V f, uses absolute optimality tolerance,
relative function tolerance, and absolute step tolerance

https://www.mathworks.com/help/optim/ug/fminunc.html
fminsearch uses a derivative-free method
Python: scipy.optimize

several methods including BFGS, Newton-conjugate-gradient, trust-region

Newton-conjugate-gradient, trust-region truncated generalized Lanczos,
trust-region nearly exact, Nelder-Mead simplex (derivative free method)

https://docs.scipy.org/doc/scipy/tutorial/optimize.html
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MATLAB: optimization toolbox: Isqnonlin

trust-region reflective (default) requires that the nonlinear system r(z) € R?
cannot be underdetermined, i.e., ¢ > n

https://www.mathworks.com/help/optim/ug/lsqnonlin.html
curvefit solves a curve fitting problem, which is an application of NLS

Python: scipy.optimize.least_squares
trust-region reflective is suitable for large sparse problems

LM does not handle bound constraints and it does not work for under-determined
nonlinear system

another choice: scipy.optimize.leastsq solves the NLS without bounds

scipy.optimize.curve_fit solves a curve-fitting problem using NLS
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Accelerated gradient methods
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assumptions:

f is convex and differentiable
V f(z) is Lipschitz continuous with constant L

IVf(z) = VIl < Lilz -yl

optimal value f* = inf, f(x) is finite and attained at z*
applying the following methods to the function class in the assumptions

FISTA (Fast iterative shrinkage-thresholding algorithm)
Nesterov's method

have O(1/k?) convergence (improvement over the gradient method with rate O(1/k))
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initializes (9 and set y() = 20 ~; =1

2®) = y® — 1,97 ¥)

14+ 4/1+ 472

Ve+1 = 5

YO+ — ) 4 <7k - 1) (2 — 2-1)
V41

constant step size t, = 1/L (if L is known); otherwise, use backtracking

(0) _.%x||2
a convergence result showed that f(z(®) — f* < 2je 2|l

< — e (for constant step size)
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before the update of z in iteration k, find a suitable ¢,

t:=t,_1, (definetq=1%>0)
z =y —tVf(y)
while f(2) > [(4) = 953
t:=pt, with g <1

T =y — tVf(y)
end

Lipschitz continuity of V f guarantees t; >ty = min{t, 3/L}
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the Nesterov's second method (as algorithm 1 from Tseng 2008)

choose any sequence satisfying

Oy € (0, 1] and

algorithm: choose z(9) = v(0); for k > 1, repeat the steps
y = (1—0)aD 4 gt
o®) = ) gy
Ok

2 = (1= 0)z® D 4+ gp0®)

tr = 1/L or use line search if L is unknown
convergence: f(zF)) — f* decreases with rate O(1/k?)
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minimize f(z) = log (Zgl e“iT“bi) (convex problem)

minimize f(z) = log Y exp(afz + b;)
T T

— Gradient-descent
—FISTA

n = 100, m = 200 where a;, b; are randomly generated; using fixed t = 0.1
faster convergence of FISTA but f(:c(k)) is not monotonically decreasing
the descent version of FISTA can be found in Beck and Taboulle 2009
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this lecture presents the accelerated gradient methods for
minimize f(x)
x

where f is convex and V f is Lipschitz continuous
however, FISTA and Nesterov's method were originally proposed for a wider class

minifmize f(z) :=g(z) + h(z)
where g is continuously differentiable convex while i can be closed and convex

(but not necessarily differentiable)
we will revisit the two methods again in the topic of proximal algorithms
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conventional algorithms for differentiable f

Lecture notes on Optimization Methods for Large-Scale Systems, EE263C, L.
Vandenberhge, UCLA

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, 2004

Chapter 12-13 in I. Griva, S.G. Nash, and A. Sofer, Linear and Nonlinear Optimization,
SIAM, 2009

Chapter 5 in J. Nocedal and S.J. Wright, Numerical Optimization, Springer 2006
accelerated gradient methods for convex f

A. Beck and M. Teboulle, A Fast Iterative Shrinkage- Thresholding Algorithm for Linear
Inverse Problems, SIAM J. Imaging Sciences, 2009

P. Tseng, On Accelerated Proximal Gradient Methods for Convex-Concave Optimization,
Technical Report, 2008
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