SPARSE AUTOREGRESSIVE MODEL ESTIMATION FOR LEARNING GRANGER CAUSALITY IN TIME SERIES

JITKOMUT SONGSIRI email: jitkomut.s@chula.ac.th

Autoregressive Models

explain a multivariate time series by a vector AR process of order p $y(t) = A_1 y(t-1) + A_2 y(t-2) + \dots + A_p y(t-p) + u(t)$ $y \in \mathbf{R}^n$, $A_k \in \mathbf{R}^{n \times n}$, $k = 1, 2, \dots, p$ *u* is noise

```
– – mean
– AR
```

Granger Graphical Models (Granger1969) **Group Sparsity**

sparsity in coefficients

 $(A_k)_{ij} = 0, \quad k = 1, 2, \dots, p$

is the characterization of Granger causality of AR models

• y_i is not Granger-caused by y_j

stack the (i, j) entries of all A_k 's in vector $B_{ij} \in \mathbf{R}^p$

n = 51 (51 states in the U.S.)

the number of patients in AK the number of patients in LA

the number of patients in WA y_{51}

• knowing y_i does not help improve the prediction of y_i

 y_2 is Granger caused by y_1 y_4 is NOT Granger caused by y_2

granger graphical model zero patterns in A_k

Sparse Autoregressive (AR) Models

Problem: find A_k 's that minimize the sum-square error

 $\sum_{t=p+1}^{N} \|y(t) - \sum_{k=1}^{p} A_k y(t-k)\|_2^2$

• A_k 's contain many zeros (to infer Granger causality among variables) • A_1, A_2, \ldots, A_p have a common zero pattern

this formulation finds many applications in neuroscience and system biology (Salvador et al. 2005, Valdes-Sosa et al. 2005, Fujita et al. 2007, ...)

Constrained AR Estimation

given the measurements $y(1), y(2), \ldots, y(N)$ minimize $\sum_{t=p+1}^{N} \|y(t) - \sum_{k=1}^{p} A_k y(t-k)\|^2$ subject to $(A_1)_{ij} = (A_2)_{ij} = \dots = (A_p)_{ij} = 0, \quad (i,j) \notin \mathcal{V}$ with variables $A_k \in \mathbf{R}^{n \times n}$ for $k = 1, 2, \ldots, p$

• \mathcal{V} is the index set of a given Granger causality constraint

• the equality constraints can be eliminated, resulting in a reduced least-squares • the solution is then analytically obtained

obtain a group sparsity in A_k 's if we can enforce $||B_{ij}||_2 = 0$, or $||[(A_1)_{ij} \ (A_2)_{ij} \ \cdots \ (A_p)_{ij}]||_2 = 0$ for some (i, j)

Sparse AR Estimation

given the measurements $y(1), y(2), \ldots, y(N)$

minimize $\sum_{t=p+1}^{N} \|y(t) - \sum_{k=1}^{p} A_k y(t-k)\|^2 + \lambda \sum_{i \neq j} \|[(A_1)_{ij} \cdots (A_p)_{ij}]\|_2$

with variables $A_k \in \mathbf{R}^{n \times n}$ for $k = 1, 2, \dots, p$

- regarded as an ℓ_1 -regularized least-squares problem
- summation over (i, j) plays a role of ℓ_1 -type norm
- using the ℓ_2 norm of p-tuple of $(A_k)_{ij}$ yields a group sparsity
- λ is called a regularization parameter ($\lambda > 0$)

a heuristic convex approach to obtain sparse AR coefficients

Nodel	Sel	ection

topology #1	topology #2	 topol	ogy #M

error = 2.89 %			error = 8.42					
•					0	0		
°	•	-	- 0	0	+			
	• •	+	0	• •				

Sparse AR estimation performs better than Ridge regression even when N (number of samples) is small

mode Model

5 selected 10

Crossvalidation

Alternating Direction Method of Multiplier (ADMM)

Initialize $A^{(0)}, Z^{(0)}, U^{(0)}$ and set an ADMM parameter ho > 0 $A^{(k+1)} = \operatorname{argmin} \frac{1}{2} \|Y - AH\|_2^2 + \frac{\rho}{2} \|A - Z^{(k)} + U^{(k)}\|_F^2$ $= \operatorname{argmin} \{ (\rho/2) \| A^{(k+1)} + U^{(k)} - Z \|_F^2 \}$ $Z^{(k+1)}$ $+\lambda \sum_{i \neq j} \left\| \begin{bmatrix} (Z_1)_{ij} & (Z_2)_{ij} & \cdots & (Z_p)_{ij} \end{bmatrix} \right\|_2$ $U^{(k+1)} = U^{(k)} + A^{(k+1)} - Z^{(k+1)}$ (Boyd et. al. 2010) until a stopping criterion is satisfied

Google Flu Trend

show the number of influenza-like illness (ILI) cases per 100,000 population (estimated by Google)

- A- update takes the form of ridge regression
- Z- update has a soft thresholding formulation
- each step can be computed efficiently

total 30,000 variables solved in 15-30 seconds

- Arkansas, Texas, Oklahoma and Louisiana are among the states that have higher numbers of ILI cases than the mean value
- TX, OK, LA, and AR have significant influences on many states
- factors such as climate, geography and public health policies can be taken into account to verify this result

Functional Magnetic Resonance Imaging (fMRI) time series

- the data were obtained while a subject was in the resting state • BOLD signals recorded at 6004 voxels with 1499 time samples
- reduce the number of voxels to 201 (red dots)

- BIC selects the AR model of order 1 and the graph density is 7%
- orange color painted at the link end towards node j represents that the node j is Granger-caused by other nodes.
- temporal lobes, and the prefrontal cortex are the main elements of brain functional in the resting state

Conclusions

We have presented a convex framework for learning a topology in Granger graphical models, which is equivalent to estimating autoregressive models and promoting a joint sparsity in the AR coefficients simultaneously. The formulation is a least-squares problem with an L1-type regularization. We have investigated the ADMM algorithm which is very simple to implement numerically and has a desirable rate of convergence in practice. Moreover, we have described a model selection method for learning the most suitable sparsity pattern (or graph topology) for the given data. Using BIC score tends to pick a sparse model, which result in a low estimation error if the true model is also sparse, while the cross validation technique favorably selects a denser model. Experiment with randomly generated data sets, time series of Google flu trends and fMRI were included to confirm the effectiveness of our approach.