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Introduction
Recent Research

e Model : 1. Tip mass 2. Motor angle
e Control Law : velocity or its spatial higher derivative feedback.

e Stability Analysis : Spectral growth-determined condition, Energy
Multiplier Method, Frequency domain condition.




Work Procedure

[0 Study the theory of infinite dimensional control systems.

[0 Find a mathematical model of the flexible robot arm system.l
[0 Propose a feedback control law.!

[0 Analyze the closed-loop stability.!

[0 Conclude the results.k

The Benefit of this work

[1To understand the properties of the flexible robot arm system.

[ To propose a control law that guarantees the closed-loop stability of
the system.




Y Yo

(t)

w(z,t) + ETw™ (z,t) + z6(t) = 0
T+ EIw"(0,t) — Iyf = 0

m [w(x, £+ zé@] — ETw"(l,1)
w() =00 10} = i (L) 0




Semigroup Theory

Consider an abstract Cauchy problem,

2(t) = Az(t) + Bu(t), t>0 (5)
2(0) = 2 € D(A) (6)

where A is a closed operator with D(A) dense in Z. The solution
of (5)-(6) is,

2(t) =T(t)z0 + /0 T(t — s)u(s)ds (7)




Definition

Definition 4.1 Let Z be a Hilbert space. A () semigroup of operators
is a family of bounded operators {T'(¢),t > 0} on Z that satisfies

1. T({t+s)=TE)T(s)k
2. T(0) = i
3. [|T(t)z0 — 20| = O ast — 0" Vzye Z
1
Theorem 4.2 A C| semigroup T'(t) on Z has the following properties:
1. If wy = inf (3 log | T'(¢)]]), then wy = limy_ (5 log | T'(¢)]|)R

2. Yw > wy there exists a constant M > 1, w > 0
such that ||T'(¢)|| < Me" Vi >0




Infinitesimal generator & Resolvent Operator

Definition 4.3 The infinitesimal generator A of a C-semigroup on a
Hilbert space Z is defined by

Az = lim 1(T(t) —I)z

t—0+ 1
D(A) is the set of elements in Z for which the limit exists.
1

Theorem 4.4 Let T'(t) be a Cjy semigroup with infinitesimal generator
A and growth bound wy. If Re(A) > w > wy then A € p(A), and for
all z € Z

AN NN —— /OO e MT(t)dt
0




Characterization of infinitesimal generator
Definition 4.5 T(t) is a contraction semigroup if ||T(t)|| <1 ,Vt >0

Theorem 4.6 Sufficient conditions for a closed, densely defined opera-
tor on a Hilbert space to be the infinitesimal generator of a () semigroup
satisfying ||T'(¢)]] < e are:

Re (Az, z)
Re (A*z, z)

wllz|* Yz € D(A) (8)
wllz|* vz € D(AY) (9)




Stability

1. T(t) is asymptotically stable if
IT@t)z|| =0 if t—00 , VzeZ
[

2. T'(t) is exponentially stable if there exist M > 1 and w > 0 such
that
IT@) < Me™*

[
3. T(t) is weakly stable if Vx Yy € Z

(I't)x,y) =0 , t— oo




To prove the asymptotically stability

Theorem 4.7 Let T'(t) be a uniformly bounded semigroup on a Banach
space X with the infinitesimal generator A and

1. 0(A) NiR is countable
B\ O‘p(A*) = (Z)

then T'(t) is asymptotically stable.




Notation

e H"(0,1) : Sobolev space order m with norm given by

lullfn = > 1D
0<|a|<m
e H{(0,1) : {u e H*0,1) | u(0) = «/(0) = 0} with norm given by

lull gz = Il

o C5(0,1) : {u € C¥(0,1) | D®u is bounded }
e C"A0,1) : {u€ C™0,1) | |D(z) — Du(y)| < K|z — y|*}

Result : | - |l gz ~ | - ll 2




Sobolev Imbedding Theorem

Definition 6.1 Let X and Y be Banach spaces. We say that X is
imbedded in Y and write X — Y if

1. X is a subspace of Y, and

2. The identity operator I : X — Y is continuous. i.e., there exists
M > 0 such that

|Lzly < Mlellx, ¥ze X




From the Sobolev Imbedding theorem and the Hilbert-Schmidt imbed-
ding theorem, we can list the imbeddings that are used here:

1. H40,1) — C3(0,1) and H2(0,1) — CL(0,0l
2. H%(0,1) — ¢%o, i
ul)] < Myf|u"|| Yu € Hy(0,1) (10)
I

3.1:H*0,1) — L(0,1) is compact.k
= [ : H3(0,1) — L»(0,1) is also compact.




The Closed-Loop System
We apply the control law
r(t) = —EIw"(0,8) + Kl [p (i, 2) 5 + miw(,t)]  (11)

Substitute (11) in (2), the closed-loop equations are:!

w(w,t) + %w""(:ﬁ, t) = —zK [p (wyz) +mluw(l, )F | @2)
WO = a0t =l (L H—0 (13)

mw(z,t) +mlK [p (w,x) + mlw(l,t)] = BEIw"(l,t)  (14)




Problem formulation

Let H = L(0,!) and consider the Hilbert space
H = H(0,1) ® L(0,1) ® C with an inner product
<U, U> =t <U/1/, /Ui/>H S <u27 v2>H +m <U3, U3>(C (15)

we can write (12)-(14) in the form Z = Az, where

0 ] 0
A = —%aa—; —Kzp (-, z) —Kzml (16)
L e L KTl

D(A) = {(21, 20, 23) € H(0,1) ® Hj(0,1) & C |
21(0) = 21(0) = 21(1) = 0, 22(1) = 23}

2(t) = [w(-t) () w(l,t)] €H




A generates a () semigroup

Define the operator () : H — H

K%;‘T) [p- (v %)+ mlvy (D} — 47 fox 09:4 faﬁs faﬁz vo(z1)dxidxedrsdry + qull(-w)
Qu = v1(x)
v1(1)
where
20 b
q(z) = b B
g3 P2 x°
= — — [
%(*) p( flomai g 120> = mlaile)
Lemma 8.1

1. Q) is the inverse of A

2. A1 is a bounded operator.

U3
| o




Note : D(Q) =H = R(A). = A is onto.

Theorem 9.1 (Closed graph Theorem) Let X, Y be Banach spaces.
A linear operator T': X — Y is bounded if and only if T is closed.

Therefore, A~ ! is closed.= A is closed.

Definition 9.2 The resolvent set of a closed linear operator A is

p(A)={A e C| Al — A s bijective }

Result : = 0 € p(A)




The Adjoint operator A*

From the definition of the adjoint operator, we have

0 = 0
AL %88_;4 —Kzp(,z) —Kzml (18)
| L el e ey

D(A*) = {(vi,v2,v3) € H*(0,1) & Hi(0,1) & C |
v(0) = v5(0) = v{(1) = = vy(1)}




Theorem 9.3 A generates a contraction semigroup.
proof. From the calculation,

RetAl ), p == =R platp et mlus|® < 0 (19)
Re (A*u,u)y, = —K |p (ug, z) + mlug|” <0 (20)

The equations (8)-(9) are satisfied with w = 0 O]




Stability Analysis
[0 The spectrum of the infinitesimal generatorl
[ Eigenvalue analysish

[1 Closed-loop stability




The spectrum of the infinitesimal generator

To prove that the spectrum set consists of only the eigenvalues

Theorem 10.1 Let A be a closed linear operator with 0 € p(A) and
A1 compact. The spectrum of A consists of only isolated eigenvalues
with finite multiplicity.

Lemma 10.2 A ! is compact.
Proof. A~!:H — H can be written in the following form,

e
AT=11 0 0
Ty )

We will prove the compactness property of each 7} as follows:




1. Consider T : H3(0,1) — HZ(0,1) defined by

K
Tiw = —=4a(2)(p {0, 2) + miv(l))
Let Sy be a bounded set of v € H3(0,1) with HvHHg < N. Then |
K
Tivllg = llao)lLglo (o.2) + miv(l)
K
1< Hla@lgel (v,z) |+ mio(D)])
HE pl
1< gyt § ol + midlollg} (@)
Kml® ( pl
< N/ M N 22
& ety ]
1< M,

(using (10), the Cauchy-schwarzt ineq., and || - || ;2 ~ || - ||H02)|
This shows that the image of 77 is uniformly bounded.




Since ¢y(x) is continuous , i.e.,

Vg € (O, l),VEl >0, dd; > 0 s.t.
lgo(x) — qo(x0)|| < €1, whenever |x — x¢] < 61

K

ITro(z) = Tw(zo)l| = —=lp (v, 2) + miv(D)]llg2(z) — ga(2o)]

Ki [
< T {%N’ + mlMlN} |g2() — qa(x0)||

et c = Elel/K(%N’ +mIM;N), so
| Tiv(x) — Tiv(x)|| < € whenever |z — xo| < 6

Note: §; does not depend on the choice of v € Sy&=> the image of T}
Is equicontinuous.




Theorem 10.3 (Arzela’s theorem) Let ) be a bounded domain in
R. A subset K of C'(€2) is precompact in C(€2) provided that

1. K is uniformly bounded. i.e., there exists a constant M such that

Voe K,z €, [¢(z)| <M

2. K is equicontinuous. i.e., Ve > 0,30 > Osuchthatifp € K,x,y €
), and |z — y| < § then |o(z) — d(y)| < €.

[
The image of 7} is a precompact set®==> 7 is compact.




2. Consider Ty : Ly(0,1) — HZ(0,1) defined by

Tav|= ——/ / / / v(x1)dridredrsdry
x3 J 19

Let f € L5(0,1) and let x5 be the characteristic function of a set S.
Then

X(0.2) € La[0,1] x Ly[0, ]

because f[oz foz Xozndrdy =zl <00 ,0<z < 1.
Thus the operator A defined by

. z
Af—/0 f(T)dT—/O X(0.0)f (T)dT

is a compact operator from Ly(0,1) — Ly(0, )&= T5 is compact.




3. Consider Ts : C — H{(0,1) defined by
m
Tsv = ﬁql(a:)v

As in the case of 7}, we can see that 7% is compact.!

4. The imbedding mapping from HZ(0,1) — Ls(0,1) is compact.
This follows from the Hilbert-Schmidt imbedding theoremll

5. T5 - Hg(O,l) = C, T5U 5 U(l)
From (10), 75 is a bounded linear functional. Its image has a finite
dimensional range == T% is compact.!

From 1-5, we can conclude that A~ is compact. []




Now we have,
00 € p(A)R
O0A ! is compact.!

[1From theorem 10.1, the spectrum of A consists of only isolated
eigenvalues with finite multiplicity.




The eigenvalues

Let A and ¢() = [¢1(z) ¢o(x) ¢3]T be an eigenvalue and the corre-
sponding eigenvector of A.F

Ap(x) = Ag(x) (23)

The eigenvalues are the solutions of,

K(sh-c—ch-s) —2Kml{ - sh -
pK(sh-c—ch-s) mif - s S+ﬁ{

mp
ﬁQ()\—k%lgﬁ—Kle) 1+ch-c+—(sh-c—ch-s)}—0 (24)

p

where

s = sin(0l) ¢ = cos(B1) sh = sinh(B1) ch = cosh(f1)

EI
e
p

Next, we will show that all eigenvalues lie in the open LHP.




Eigenvalue Analysis

Lemma 10.4 Consider the following equations,

hy(8) = sinh(Bl) + sin(Bl) = 0 (25)
hao(B) = cosh(Bl) + cos(Bl) + kB(sinh(Bl) —sin(Bl)) =0 (26)

where k£ > 0 is a constant. If § = a + ib is a solution of either (25) or
(26) thenlfa| = |b]. Moreover, (25) and (26) have distinct solutions.

If the solution [ satisfies |a| = |b|, equation (25)-(26) can be rewritten
as

h1(B) = 0 <= hi4(a) = cos(al) sinh(al) + sin(al) cosh(al) = 0 (27)
ha(8) = 0 <= has(a) = cos(al) cosh(al) + ka(cos(al) sinh(al) — sin(al) cosh(al)) =0 (28)




Let @ be a solution of (27), then
sin(agl) cosh(agl) = — cos(apl) sinh(agl)
Substitute in (28) we get
hoa(ag) = cos(apl)|cosh(agl) + 2kag sinh(al)]
Since cos(apl) # 0 and

ag > 0 = sinh(apl) > 0 = agsinh(agl) > 0
l() MR Sinh(aol) NS Sinh(aol) =\

therefore,

cosh(agl) + 2kag sinh(agl) >0 Vag € R

— If g is a solution of hi(a) = 0, then hy(ag) # 0, i.e., they have
no common solutions. [l




Lemma 10.5 Let ) and ¢(z) = [¢1(z) Ady(z) A2¢1()]" be an

eigenvalue and the corresponding eigenvector of A respectively. Then,

p{é1, z) +mlgy(l) # 0

[
Proof. Assume F(¢1) = p{(¢1,2) + mlpi(l) = 0. From Ag(x) =
Ao(x), we can find ¢y (x)

¢1(x) = c1(cosh(Bx) — cos(Bx)) + cs(sinh(Bzx) — sin(fz))
where ¢, c3 satisfy
NN (29)
c1 {(sh —8)+ m—ﬂ(ch—c)} +c3 {(ch+c) = m—ﬁ(sh— s)} —- (30)

p p

c1 {plB(sh —s) — p(ch +c) +2p + miBF*(ch — ¢)} + c3 {plB(ch + ¢) — p(sh +s) + mlﬁ2(8h(— S))}
31




or,

(ch +¢) (sh +s)
(sh—s)—l—mTﬂ(ch—c) (ch—l—c)—i—m—pﬂ(sh—s)
plB3(sh —s) — p(ch + ¢) + 2p +miB%(ch —c) plB(ch + c) — p(sh +s) + mlB%(sh — s)

using row operation,

}Sh \ sgci;f;ﬁc()ch — o) (ch+ cgsi;”}fszsh - s>: [:] = [8]
II] o =0l

O From lemma 10.4 = c3 =0 F
O ¢1(x) = 0 = ¢(x) is not the eigenvector of A,

which is a contradiction




From the eigenvalue problem,

% pK

Pa) + () =~ o (b2 + mign (D) & (D)
51(0) = 61(0) = (1) = 0 (33
00 = S0 o, a) + mldn (0] + Ni(l) (34

Take the inner product with ¢; on both sides in (32)

(o) + 22 <z>1 61) + 22 (o (0, 2) + mir (1)) 2, 61) = 0 (35)

since

\PEml mez Km212

(61, 2) d1(1) + |61(D) + A2 o+ o"* (36)

<¢//// >

substitute in (35), we get




X Amlor P + o1} +AK |p (61, 2) + mlar (D + EI[l¢"]* = 0 (37)
Let A = a + @b, (37) can be split into two equations.

(a® = ) (m|g1 (D + plldn|?) +a- K |p {1, @) + migr (D)) + BI|l¢" > =0  (38)
2ab(m| g1 (1) + pllonl®) + b+ K |p(¢1,2) + migr(1)]> =0 (39)

If b = 0, from (38)
(1 (1) + pllonl?) + a - K |p (61, 2) + mig1(D)]* + EI|¢"|]* = 0

From lemma 10.5, the coefficients of the polynamial in the variable a

are all positive.Thus a < 0.F
If b = 0 from (39)

_ Klp{er,z) + migi ()]’

Al D+ ploilE)

Thus Re(\) < 0.




Closed-Loop Stability

0 6(A) = ap(A)

[0 The real part of all eigenvalues are negative. !

0 o(A) U iR == is countable. I

O op(A*) =o0.(A) =01

[J A contraction semigroup is uniformly bounded. !

[1 From theorem 4.7, the semigroup is asymptotically stable.




Conclusions

[1Feedback control signal through motor acceleration.

[1The Proposed control law is the sum of the tip deflection and its
linear functional

[1 The infinitesimal generator of the closed-loop system generates a
contractions semigroup.l

[0 The spectrum consists of only the eigenvalues.l
[JAll eigenvalues have negative real parts.l

[1 The closed-loop system is asymptotically stable.
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