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One can estimate an AR model using a simple method

such as a linear regression and develop a statistical test to

examine a pairwise Granger causality between any two

pair of the variables. There is a freely available MATLAB

toolbox developed by [11]. The computation used in

this approach may, however, become infeasible when the

number of neurons or voxels (n) grows. Moreover, with

a limited number of data points, it is known that the prob-

lem of estimating a complex system (in high-dimension

small-sample setting) will become ill-conditioned. The

work in [12] considered the Least Absolute Shrinkage

Selection Operator (LASSO) to pre-select voxels before

estimating an AR model. A common remedy for such

high-dimension small-sample problem is to incorporate a

regularization term in the estimation problem [13]. They

showed that adding ℓ1-norm penalty term into linear re-

gression problems induces zeros in the estimated vari-

ables. Examples of this approach applied on fMRI data

can be found in [8, 14, 15]. Using this approach, the esti-

mated AR coefficients will be sparse matrices, but we do

not necessarily obtain a common sparsity among Ak’s as

required in (2). To solve this, we consider a group lasso

formulation [16, 17] in the estimation problem. Our prob-

lem formulation is also similar to the ones shown in [9,

10]. However, we will show a competitively efficient al-

gorithm for solving the resulting optimization problems.

Section 2 presents two estimation problems catego-

rized by our knowledge of Granger causality patterns.

Then we compare the performance of the group lasso ap-

proach and a ridge regression technique in section 3. In

section 4, we illustrate two model selection methods for

choosing a parameter in the estimation problem. These

methods will be used in topology selection of a graphical

model for time series. Section 5 presents experimental

results on a real fMRI data set.

2. ESTIMATION PROBLEMS

The least-squares (LS) method is a common approach

used for fitting an AR model (1) to the measurements

y(1), y(2), . . . , y(N). The model parameters Ak’s are

chosen such that the quadratic loss
∑N

t=p+1
‖y(t) −

∑p

k=1
Aky(t − k)‖22 is minimized. If we define A =

[

A1 · · · Ap

]

∈ R
n×np then the quadratic loss can be

rewritten more compactly as ‖Y −AH‖22 where

Y =
[

y(p+ 1) y(p+ 2) · · · y(N)
]

, (3)

H =













y(p) y(p+ 1) · · · y(N − 1)

y(p− 1) y(p) · · · y(N − 2)
...

...
...

...

y(1) y(2) · · · y(N − p)













.(4)

AR estimation problems that take the Granger causal-

ity (2) into account can be divided into two categories

depending on whether a causal inference is given or not.

We will show that both of the two problems fall into a

convex optimization framework which can be solved by

efficient algorithms presented in the appendix.

2.1 Known Granger Causality

If a Granger causality structure is given (for example, a

brain network topology is known), formulating the prob-

lem of estimating AR model subject to the zero pattern of

Ak’s as in (2) is straightforward and given by

minimize (1/2)‖Y −AH‖22
subject to (A1)ij = (A2)ij = · · · = (Ap)ij = 0

(5)

for (i, j) /∈ V , where V is the index set of common

nonzero entries in Ak’s. In other words, if we present

the given Granger causal inference as a graph, then V is

the set of edges in such graph. Though it appears unlikely

how one could know a priori about the causal inference,

the problem (5) becomes more important if one wishes to

find an AR model whose estimated parameters have less

variance since some of them are shrunk to zero [13].

The problem (5) has a closed-form solution due to its

simple linear constraints. The details of calculating a

closed-form solution will be shown in the appendix.

2.2 Unknown Granger Causality

In most applications including the fMRI study, the

goal is to learn a Granger causal inference from the data,

so the graph topology is commonly unknown. The topol-

ogy can be induced from a common zero pattern of ma-

trices Ak’s. Therefore, we consider a formulation that

favors a group sparsity in Ak’s. This can be done by in-

troducing a sum of ℓ2-norm in the cost objective as

minimize (1/2)‖Y −AH‖22 + λg(A) (6)

where g(A) =
∑

i 6=j

‖[(A1)ij (A2)ij · · · (Ap)ij ]‖2.

The optimization variable is A =
[

A1 · · · Ap

]

where Ak ∈ R
n×n for k = 1, . . . , p. The scalar λ > 0

is called the regularization parameter which controls a

trade-off between the quadratic loss and the penalty term.

If we define aij = ‖[(A1)ij (A2)ij · · · (Ap)ij ]‖2, we

can write g(A) =
∑

i 6=j aij . This notation suggests

that g(A) plays a role of ℓ1-norm of the matrix [aij ],
so for a sufficiently large λ, g(A) will be small and this

will cause some (i, j) entries aij to zero. Furthermore,

using the ℓ2 norm of p-tuple of (Ak)ij will force all

p matrices Ak’s to have the same sparsity pattern, i.e.,

aij = 0 ⇔ (Ak)ij = 0 for all k. This is a common tech-

nique to force a group sparsity pattern and is known as

a Group Lasso problem introduced in [17]. The formu-

lation (6) is also independently considered in [9, 10, 18].

In these studies, they have shown an advantage of using

group lasso formulation over the standard lasso where the

estimated Ak’s may have different zero patterns.

While the problem (6) is an unconstrained convex pro-

gram, it is quite challenging to solve it in a large-scale

setting due to the nondifferentiability of g(A). We will

briefly describe in the appendix a widely-used algorithm

for large-scale convex problems called the alternating di-

rection method of multipliers for solving (6). The im-

plementation details and its numerical performance were

shown in our related paper [19].
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3. CLASSIFICATION PERFORMANCE

Using several values of λ in (6) results in several es-

timates of Ak’s, where each of them corresponds to a

sparsity pattern, ranging from dense to sparse. The effec-

tiveness of the formulation (6) for learning sparse models

can be explained from receiver operating characteristic

(ROC) curve [20]. If we make a comparison of the true

and estimated sparsity patterns, classifying the common

nonzero entries in Ak’s has two types of errors: 1) the

misclassified entries as nonzero (False Positive) and 2)

the misclassified entries as zero (False Negative). We can

compute the total error by

error =
False Positive + False Negative

n2 − n
(7)

(note that the total number of entries in the off-diagonal

of matrices Ak is n2−n.) Evaluating the performance of

a binary classifier (detecting whether an entry is zero or

nonzero) is commonly done via a receiver operating char-

acteristic curve [20], which is a plot between the true pos-

itive rate (number of correctly identified nonzeros) versus

the false positive rate. Each point along an ROC curve

corresponds to a value of the classifier parameter. Using

this evaluation technique, we can view (6) as a classifier

with parameter λ, and the ROC curve is obtained by vary-

ing λ from zero to a large value. When λ = 0, we obtain

the least-squares solution of Ak’s and they are typically

dense matrices. Hence, we expect a high true positive

rate and also a high false positive rate. On the other hand,

if λ is large, the formulation (6) returns a sparse solution,

so we expect a decrease in the false positive rate. A good

classifier should yield an ROC curve that is above the di-

agonal line (a random guess classifier) and tends towards

the top-left corner.
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Group Lasso        : N = 500
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Fig. 2 Receiver operating curves (ROC) of Group lasso

(blue solid line) and Ridge regression (red dashed

line). We vary the number of time samples used in

each method; N = 500 (circles), N = 2000 (trian-

gles), and N = 5000 (square).

We randomly generate sparse AR models with n =
20, p = 3 and compare ROC curves between group

lasso (6) and ridge regression:

minimize (1/2)‖Y −AH‖22 + λ‖A‖22. (8)

The latter problem is also known as the ℓ2-regularized

least-squares [13] which is a common and better based-

line approach than the traditional least-squares. The reg-

ularization λ in the ridge regression is chosen via 10-fold

cross validation (with respect to prediction accuracy in a

2-norm sense). To determine the estimated sparsity pat-

tern (or Granger causality) from the solution to (8), we

construct

B = [aij ], aij =
∥

∥

∥

[

(A1)ij · · · (Ap)ij

]∥

∥

∥

2

. (9)

A Granger causal inference can then be read from the

zero pattern in B by comparing its off-diagonals with a

threshold value ǫ. We normalize B so that it has unit di-

agonals and the ROC curve is constructed by varying ǫ.
Figure 2 illustrates that the ROC curves of group

lasso formulation (6) lie above the ridge regression curve,

meaning our approach yields a higher true positive rate,

and lower false positive rate. By varying the number

of time samples (N ), an improvement of classification

performance is also expected, but our approach performs

better than the ridge regression even when N is small.

4. MODEL SELECTION & VALIDATION

From Figure 2, our goal is to achieve an operating

point near the top-left corner. This is equivalent to finding

λ corresponding to that point. In practice, it is not possi-

ble to calculate the true and false positive rates in advance

since the true sparsity pattern is unknown. In this study,

we consider a model selection problem by incorporating a

Bayes information criterion (BIC) score [13] for ranking

a subset of candidate topologies (group sparsity patterns

of Ak’s) obtained by solving (6) for M values of λ.

We generate three AR models with dimension n =
20, p = 3 and N = 1500 and the matrices Ak’s in

each of the models have the density of nonzero entries

as 5%, 35% and 70% respectively (ranging from sparse

to dense models.) Solving (6) by using M values of λ
results in M estimated group sparsity patterns of Ak’s,

ranging from densest to sparsest topologies. Then we

use each of these topologies as a Granger causality con-

straint in (5) and solve it to obtain M model candidates

whose complexity is varied from low to high. The cho-

sen λ corresponds to the Granger causality constrained

AR model that minimizes the BIC score. We show in the

appendix that the problem (5) has a closed-form solution,

so it can be computed very efficiently. For this reason,

it allows us to consider a large set of model candidates,

says we choose M = 400. In this experiment, the top

row in Figure 3 shows that the best model according to

BIC yields the error of 1.58% in the estimated topology

when the true AR model has the density of nonzero en-

tries of 5%, and the errors increase if the true AR models

tend to be denser. The bottom row in Figure 3 shows the

result when λ is chosen by a cross validation technique.

SICE Annual Conference 2013
September 14-17, 2013, Nagoya, Japan

951



In this case, the data are split into estimation and vali-

dation sets. We vary λ for M values, and pick the one

that yields the highest prediction accuracy which is eval-

uated on the validation data set [13]. The plots illustrate

that the cross validation technique tends to perform bet-

ter than BIC when the true models are dense. This agrees

with a known result that BIC prefers to favor the model

with low complexity.
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Fig. 3 Binary matrix of the common zero patterns in the

estimated Ak’s. The blue squares are the correctly

estimated nonzero entries (TP). The red circles are

misclassified entries as nonzero (FP). The black cross

signs are misclassified entries as zero (FN).

5. EXPERIMENT ON FMRI DATA

The fMRI time series considered in this project are

the commonly-used BOLD (blood oxygen-level depen-

dent) signals for analyzing brain effectivity, which were

recorded while a subject was being in a resting a state.

The details of data acquisition through an fMRI machine

can be found in [21]. The data contain the 1500 time sam-

ples recorded from 6004 voxels of interest. Note that for

an n-dimensional AR model of order p, the parameters

are A1, A2, . . . , Ap, so the total number of free parame-

ters is n2p. This means if we were to fit the time series

from all voxels with a full AR model, we would require a

memory space for storing more than 4 × 107 parameters

(or at least 300 MB just for a single matrix Ak). Thus,

we decide to reduce the number of voxels of interest to

n = 201 by sampling 201 voxels that spatially cover al-

most all areas of the brain. We applied the model selec-

tion method using the BIC score explained in section 2.

There are 200 candidate models corresponding to 50 dif-

ferent graph topologies and model order of p = 1, 2, 3, 4.

The selected AR model has order 1 and the density of

nonzero entries in the AR coefficients is 7.04%. The cor-

responding Granger graphical model that best explains

the fMRI time series is shown in Figure 4. We com-

pare this result with some studies in neuroscience, where

the network of brain activity during a resting state is of-

ten called the default mode network (DMN) [22-25]. In

these papers, it has revealed that the main components

of the DMN are the precuneus/posterior cingulate cor-

tex/retrosplenial cortex (pC/PCC/RSC), the ventral ante-

rior cingulate cortex (vACC), the medial prefrontal cor-

tex (MPFC) and the medial temporal lobes (MTLs). By

considering the sagittal view in Figure 4, we believe we

found many active nodes in vACC, MTLs, and a few

dominant nodes in MPFC and PCC/RSC. Moreover, it

seems there are strong connections between MTLs and

PCC, and a connection between MPFC and PCC, which

agree with the findings in [22]. In [24], it was shown that

vACC has a significant connectivity with PCC, which is

also found in our result. The coronal view gives the ex-

pression of strong connections between left and right me-

dial temporal lobes, which are also found in [25]. There

are other connection pairs that are not discussed in the

previous work. For example, the sagittal view shows con-

nections between the prefrontal cortex and the temporal

lobes and connections between parietal lobes and tempo-

ral lobes. It will be our best interest to interpret these

findings in the future work.

6. CONCLUSIONS

We have presented a useful application of system iden-

tification on a human brain study. Exploring relationship

structures in fMRI time series can be casted as a model

estimation problem with Granger causality constraints.

We have considered a problem of fitting autoregressive

models that favors sparse AR coefficient matrices. It

was shown that the formulation is in the form of a least-

squares problem with a sum of 2-norm regularization

term, to which we refer as a group lasso formulation. An

advantage of this approach is that we are able to obtain

solutions A1, A2, . . . , Ap that have a common sparsity

pattern, revealing a Granger causal inference. Numeri-

cal results on simulated data show that the group lasso

formulation yields a better performance than the conven-

tional ridge regression in classifying whether a pair of

two variables are Granger-caused to each other or not

(learning whether Ak’s have a common zero). Moreover,

we have described a model selection method for learning

the most suitable sparsity pattern (or graph topology) for

the given data. Using BIC score tends to pick a sparse

model, which result in a low estimation error if the true

model is also sparse, while the cross validation technique

favorably selects a denser model. Finally, the result on

the fMRI data set suggested that the posterior cingulate

cortex, ventral anterior cingulate cortex, temporal lobes,

and the prefrontal cortex are the main elements of brain

functional in the resting state. The graphical model also

showed connections between some regions that are also

discovered in some previous brain connectivity studies.
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