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Chapter 1

Introduction

1.1 Overview

Let U, V, W be random variables with a joint density function f . U and V are said

to be conditionally independent given W if

fUV |W (u, v|w) = fU |W (u|w)fV |W (v|w).

In a graph representation of a multivariate random variable X, the nodes represent

the components Xi and two nodes are connected by an undirected edge if the corre-

sponding variables are conditionally independent given the other variables. There is

a nice characterization of conditional independence for Gaussian random variables.

Let X be an n-dimensional Gaussian random variable with covariance matrix Σ. We

say Xi and Xj are conditionally independent given all other components if and only

if (Σ−1)ij = 0. The associated graph is called a Gaussian graphical model of the

random variable. Graphical models are attractive for many reasons. They can visu-

ally represent the structure of the relationships among the variables. By exploiting

the graph structure, they can also facilitate computations in large-scale problems of

inferencing and estimation.

The notion of conditional independence can be extended to time series. Let

{x(t), t ∈ Z} be a multivariate stationary Gaussian process with spectral density

matrix S(ω). The components xi and xj are conditionally independent given the

remaining variables if and only if (S(ω)−1)ij = 0 for all ω (see details in Chapter 2).

This condition allows us to consider system identification problems with conditional
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independence constraints by placing restrictions on the inverse of spectral density

matrix. This is the main topic of the prospectus. We consider maximum-likelihood

estimation of autoregressive models with conditional independence constraints. As

we shall see, this can be formulated as a convex optimization problem and readily

solved by efficient algorithms. With our method, one can learn the dependence

structure of a time series by choosing the topology that best characterizes the data

by minimizing some model selection criterion. The graphical models of time series

that we describe in this prospectus have several applications. We present three

examples of real data sets from various scientific fields to illustrate our method.

1.2 Related work and contributions

The concept of conditional independence between time series was first discussed

in [Bri75], where the so-called partial coherence function was defined as a measure

of linear dependence between two components in time series after removing linear

effects from other variables. A graphical representation of dependencies in a sta-

tionary time series was investigated in [Bri96], [Dah00]. The latter showed that the

conditional independence graphs can be represented by zeros in the inverse of spec-

tral density matrix and derived a statistic for hypothesis tests examining whether an

edge is present in the graph. The method was illustrated by the air pollution data to

study interactions among polluted particles. The same approach was also applied to

identification of functional neural connectivity in [DES97] and [EDS03]. This non-

parametric approach based on a test in frequency domain has become a useful tool

for many applications later on. For example, [TLH+00] investigated the connection

between the cortical activity and tremor in patients suffering from Parkinson’s dis-

ease. [SSSB05] explored the correlated activities in human brain networks based on

functional magnetic resonance imaging (fMRI) data. [GIF02] applied the technique

to the haemodynamic system consisting of vital signs such as heart rate, or blood

pressure, etc., which are crucial for detection of critical situation of patients in an

intensive care unit. It can be also applied to the analysis of factors in therapy process

from psychosomatic studies [FMM+05].

An advantage of using the nonparametric approach in the above examples, is

the ease of implementation. One can compute an empirical estimate of the inverse
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spectrum and apply a criterion to detect its zeros elements. Alternatively, a para-

metric approach can be used to learn graphical models where the model parameters

are constrained to each of possible graph structures. Therefore, the identification of

conditional independence structures has become a model selection problem in which

the best model minimizes a model selection criterion.

A natural parametric model is an autoregressive model. The most relevant study

of this type is the work of [Eic06]. He considered an approximate maximum-likelihood

estimation of autoregressive models with conditional independence constraints and

used an iterative algorithm to solve the problem. The covariance functions equipped

with conditional independence properties were estimated. Consequently, the model

parameters were obtained from the Yule-Walker equations. Another related work

was [VSSBLC+05]. Since the zero constraints on the inverse of spectral matrix

can be translated to the restrictions on AR parameters, they considered a sparse AR

model estimation by applying the regularization technique to recover the sparsity au-

tomatically. However, their problem formulation appears to correspond to Granger-

causality graphs (see Chapter 5) rather than conditional independence graphs. More-

over, a first-order model was assumed, whereas the difficulties always arise from the

models of higher order. It was also mentioned in [DE03] that numerical solutions to

this problem have been under exploration.

Our main motivation is to propose a convex framework for maximum-likelihood

estimation of autoregressive models with conditional independence constraints. More

precisely, the zeros in the inverse of spectral matrix are equivalent to quadratic

equality constraints on the AR parameters, which are generally nonconvex. We

prove that, under some assumptions, a convex relaxation provides exact solutions

for this problem, yielding polynomial-time algorithms. The results of this work can

serve two purposes. Given a conditional independence graph of a time series, one

can estimate the spectrum according to the graph structure. Furthermore, if the

conditional independence is not specified a priori, the structure can be identified

from the model selection problem.
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1.3 Outline of the prospectus

The prospectus is organized as follows. Chapter 2 describes the overview of graphical

models and the concept of conditional independence. The approximate maximum-

likelihood estimation of a multivariate Gaussian autoregressive model is discussed in

chapter 3. It explains the difficulty arising from considering the conditional inde-

pendence constraints in the estimation. Section 3.2 in chapter 3 contains the main

contribution of this work; it proposes a convex formulation which is a relaxation

method to cope with the nonconvex constraints. An important result presented in

this chapter is to prove that the relaxation provides exact optimal solutions. Chap-

ter 4 illustrates the proposed method by demonstrating the examples of air pollution

data, stock index returns, and fMRI data. We also present supplementary results

on maximum-likelihood estimation of autoregressive models with Granger causality

constraints in Chapter 5. The last chapter concludes the prospectus and discusses

topics for further studies.
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Chapter 2

Graphical models of time series

In recent years, graphical models have become a useful tool for many statistical

applications. A probabilistic graphical model consists of a collection of probability

distribution which can be factorized according to the graph structure. The graph

G = (V, E) contains a set of vertices, V identifying random variables and a collection

of edges, E. Two nodes are connected by an edge if the corresponding variables are

conditionally independent. This model combines probabilistic concept with a graph

theory by representing dependencies among multivariate random variables in the

graph. By exploiting the graph representation, basic statistical quantities such as

marginal or conditional probabilities, or the likelihoods, can be computed with less

complexity. This computational advantage can be found in numerous applications

such as combinatoric optimization, bioinformatics, speech processing, or image pro-

cessing. For an introduction to graphical models, one may refer to [Edw00, Whi90].

An extensive treatment can be found in [Lau96].

As mentioned above, graphical models have been initially developed for static

multivariate random variables. A review of basic ideas and algorithms for proba-

bilistic inference was discussed in [Jor04]. A remarkable result is the work of [Bri96]

and [Dah00] who extended the concept of conditional independence to time series.

This provides a method for identifying associations between entire time series. [BJ04]

proposed an algorithm to learn graphical structures from the spectral representation

of time series. [FD03] extended the work from [Dah00] to study the dependence

structure of subprocesses when some of components in time series are not available.

[DE03] discussed several ideas of causality and graphical models and defined the
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global Markov properties. One type of such ideas is the integration between Granger

causality and graphical models which was first introduced in Chapter 14 of [SWT06]

and [Eic07]. The concept of Granger causality, which has been used extensively in

econometrics, is based on the idea that one time series is said to be Granger causal

for another series, if the prediction of the latter series can be improved by using

information from the former series. In addition to applications in economics, this

concept has become a promising technique for several applications in neuroscience

(see Chapter 14,17,18 in [SWT06], [Eic05], and [FSGM+07]). We refer to Chapter 5

for more details.

In this chapter, we mainly focus on the concept of conditional independence

graphs for multivariate time series. We first discuss the definition of conditional

independence for random variables and the associated graph. Then the idea will be

generalized to the time series case.

2.1 Conditional independence of random variables

Definition 2.1. Let X, Y, Z be random variables with a joint density function. We

say that X and Y are conditionally independent given Z and write X ⊥⊥ Y |Z if and

only if

fXY |Z(x, y|z) = fX|Z(x|z)fY |Z(y|z). (2.1)

The condition (2.1) must hold for all z such that fZ(z) > 0.

For Gaussian random variables, there is a simple characterization of this property.

Multivariate normal distribution

Let X be an n-dimension Gaussian random variable with mean µ and covariance Σ.

The density function is given by

f(x) =
1

(2π)n/2 det1/2(Σ)
exp

{

−
1

2

〈

Σ−1(x − µ), (x − µ)
〉

}

.

Assume that the random vector X is partitioned into component Y and Z with the

corresponding mean and variance;

X =

[

Y

Z

]

, µ =

[

µy

µz

]

, Σ =

[

Σyy Σyz

Σzy Σzz

]

.
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Proposition 2.2. The conditional distribution of Y given Z = z is also normal with

mean

µy|z = µy − ΣyzΣ
−1
zz (z − µz), (2.2)

and covariance

Σy|z = Σyy − ΣyzΣ
−1
zz Σzy. (2.3)

The conditional mean is the linear least squares estimate of Y given Z = z and

is simply a linear transformation of z. More interestingly, the conditional covariance

is constant for all values of z. Next, we will present an important result: the condi-

tional independence between two variables produces zeros in the inverse of covariance

matrix.

Corollary 2.3. Let X ∼ N (0, Σ) be an n-dimensional random variable and V =

{1, 2, . . . , n}. Xi and Xj are conditionally independent given the other variables,

XV \{i,j}, if and only if

Xi ⊥⊥ Xj|XV \{i,j} ⇐⇒ (Σ−1)ij = 0. (2.4)

Proof. Without loss of generality, assume i = 1 and j = 2. From (2.3), the

conditional covariance of (Xi, Xj) given the rest, is

Σi,j|V \{i,j} = Σ11 − Σ12Σ
−1
22 ΣH

12 ,

[

σii σij

σij σjj

]

2×2

.

Apply the Schur complement of Σ to obtain the concentration matrix

Σ−1 =

[

(Σ11 − Σ12Σ
−1
22 ΣH

12)
−1

>

> >

]

,

where we neglect the > terms as they are not relevant to the calculation. This shows

that the (1, 1) block of Σ−1 has size 2 × 2 and is infact the inverse of conditional

covariance matrix. Thus, (Σ−1)12 = 0 ⇒ σij = 0 and it implies that Xi and Xj are

conditionally independent given the remaining variables. �.

Conditional independence graphs

A conditional independence graph is simply an undirected graph where the presence

of an edge is encoded by the conditional independent constraint.
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The conditional independence graph associated with a multivariate random vari-

able X is the undirected graph G(V, E) consisting of a set of vertices V = {1, 2, . . . , n}

and a set of edges E such that

A—B /∈ E ⇐⇒ XA ⊥⊥ XB|XC,

for all A 6= B and C = V \ {A, B}.

Corollary 2.3 shows that for Gaussian random variables, missing links in the

graph can be read from zeros in the inverse of the covariance matrix. A problem of

computing the estimates of the mean µ and covariance Σ of a multivariate Gaussian

variable subject to conditional independence constraints is known as covariance se-

lection problems [Dem72]. Numerous proposed algorithms for solving this problem

can be found in [DVR08, BEG08, FHT07, YL07].

In the next section, the idea of conditional independence graph is generalized to

a time series case.

2.2 Conditional independence of time series

Let x(t) =
[

x1(t) x2(t) . . . xn(t)
]T

, t ∈ Z, be a multivariate stationary Gaus-

sian time series and (A, B, C) be the component indices of x(t) where A 6= B and

C = {1, 2, . . . , n} \ {A, B}. It is known that for a Gaussian process, zero correlation

is equivalent to independence. Therefore, the two components xA and xB are con-

ditional independent given xC , denoted by xA ⊥⊥ xB | xC , if and only if the partial

correlation is zero for all time lags;

xA ⊥⊥ xB | xC ⇐⇒ cov{εA|C(t), εB|C(t + k)} = 0 , ∀k ∈ Z, (2.5)

where

εA|C(t) = xA(t) −E (xA(t) | xC(s) , s ∈ Z) ,

εB|C(t) = xB(t) −E (xA(t) | xC(s) , s ∈ Z) ,

are residual processes of xA and xB, respectively after removing the linear effects of

xC . This is the analogy of the static case. The conditional mean in (2.2), which is

a linear function of the given information, must be removed from the two interested

variables.
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To characterize an explicit condition in (2.5), two optimal filters {dA(k), k ∈

Z}, {dB(k), k ∈ Z} and two optimal means µA, µB which minimize

E





(

xA(t) − µA −
∞
∑

k=−∞

dA(t − k)xC(k)

)(

xA(t) − µA −
∞
∑

k=−∞

dA(t − k)xC(k)

)H




E





(

xB(t) − µB −
∞
∑

k=−∞

dB(t − k)xC(k)

)(

xB(t) − µB −
∞
∑

k=−∞

dB(t − k)xC(k)

)H




must be determined and they are obtained by the following results from [Bri75].

Consider a multivariate stationary time series partitioned as

x(t) =















x1(t)

x2(t)
...

xn(t)















,

[

y(t)

z(t)

]

(2.6)

with mean E[x(t)] = µx. Denote the covariance function

C(k) = E[(x(t + k) − µx)(x(t) − µx)
H ] =

[

CY Y (k) CY Z(k)

CZY (k) CZZ(k)

]

, k = 0,±1, . . . ,

and the spectral density

S(ω) =

[

SY Y SY Z

SZY SZZ

]

=
∞
∑

k=−∞

[

CY Y CY Z

CZY CZZ

]

eiωk. (2.7)

Theorem 2.4. Consider a multivariate time series defined above. Assume that

CY Y (k), CY Z(k), CZZ(k) are absolutely summable and SZZ(ω) is nonsingular for all

ω. Then the optimal µ and {a(k), k ∈ Z} minimizing

E





(

y(t) − µ −
∞
∑

k=−∞

a(t − k)z(k)

)(

y(t) − µ −
∞
∑

k=−∞

a(t − k)z(k)

)H




are given by

µ = µy −

(

∞
∑

k=−∞

a(k)

)

µz = µy −A(0)µz, (2.8)

and a(k) = 1
2π

∫ 2π

0
A(ω)eikωdω where,

A(ω) = SY Z(ω)S−1
ZZ(ω). (2.9)
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Moreover, the cross spectrum of the residual error

ε(t) = y(t) − µ −
∞
∑

k=−∞

a(t − k)z(k),

is given by

Sεε(ω) = SY Y (ω) − SY Z(ω)S−1
ZZ(ω)SZY (ω). (2.10)

Proof. The optimal mean and optimal filter in (2.8), (2.9) were proved in [Bri75].

We shall show (2.10) only. Since the residual error has zero mean, the covariance

function is

Cεε(τ) = E[ε(t + τ)εH(t)]

= E
[

(y(t + τ) − µy)(y(t) − µy)
H
]

+ E



(y(t + τ) − µy)

(

∞
∑

k=−∞

a(k)(µz − z(t − k))

)H




+ E

[(

∞
∑

k=−∞

a(k)(µz − z(t + τ − k))

)

(y(t) − µy)
H

]

+ E





(

∞
∑

k=−∞

a(k)(µz − z(t + τ − k))

)(

∞
∑

j=−∞

a(k)(µx − z(t − j))

)H


 .

Interchange the role of expectation and summation.

Cεε(τ) = CY Y (τ) −
∞
∑

k=−∞

CY Z(τ − k)aH(k) −
∞
∑

k=−∞

a(k)CZY (τ − k)

+
∞
∑

j=−∞

∞
∑

k=−∞

a(k)CZZ(τ + j − k)aH(j). (2.11)

By applying the discrete Fourier transform and substitute (2.9) to (2.11), we will

obtain (2.10). �

Now we are ready to apply the above results and discuss about conditional inde-

pendence. Note that for Gaussian time series, the residual error εA|C, εB|C in (2.5)

are then Gaussian. Therefore, the zero partial correlation is equivalent to conditional

independence. The conditional independence property can be also easily character-

ized in the frequency domain. From (2.6), let y(t) = (xA(t), xB(t)) and z(t) = xC(t).
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By using the result from (2.10), the partial cross spectrum of xA and xB given xC ,

which is the cross spectrum between εA|C(t) and εA|C(t) is given by

SAB|C(ω) = SAB(ω) − SAC(ω)S−1
CC(ω)SCB(ω), (2.12)

where SAB, SCB, SCC are the cross spectra between the corresponding variables de-

fined as in (2.7). The cross spectrum (2.10) is simply a Schur complement of S(ω)

which is analogous to the conditional covariance matrix (2.3) in the static case. More-

over, the normalized version of SAB|C(ω) called the partial spectral coherence of xA

and xB given xC is provided by

RAB|C(ω) =
SAB|C(ω)

√

SAA|C(ω)SBB|C(ω)
. (2.13)

These give us the orthogonality conditions of xA and xB which can be summarized

as follows.

xA ⊥⊥ xB|xC ⇐⇒ cov{εA|C(t), εB|C(t + k)} = 0 , ∀k ∈ Z

⇐⇒ SAB|C(ω) = 0 , ∀ω ∈ [−π, π]
(2.14)

Next we will present an important result which is again an analogue of Corollary 2.3

for time series case.

Corollary 2.5. Let x(t) be a multivariate Gaussian time series with spectral density

S(ω). Suppose S(ω) is nonsingular for all ω. Then the components xA and xB are

conditionally independent given the other variables, denoted by xC if and only if

xA ⊥⊥ xB|xC ⇐⇒ (S−1(ω))AB = 0 , ∀ω ∈ [−π, π]. (2.15)

The proof follows similarly to corollary 2.3 which is almost a direct consequence

from (2.12). Let x(t) be partitioned as in (2.6) and without loss of generality, we

define, y(t) = (xA(t), xB(t)) and z(t) = xC(t). The spectral density matrix of x(t) is

S(ω) =

[

SY Y SY Z

SZY SZZ

]

.

The (1, 1) block of S(ω)−1 is obtained by taking the Schur complement on the (1, 1)

block.

S(ω)−1 =

[

(SY Y − SY ZS−1
ZZSZY )−1

>

> >

]

.
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The other blocks of S−1 can be neglected since we only need to show that (S−1(ω))12 =

0. This is obtained by the fact that the (1, 1) block of S(ω)−1 is diagonal if and only

if the cross spectrum in (2.10) is diagonal, or equivalently, the partial cross spectrum

of xA and xB given xC is identically zero for all ω. �

In conclusion, for a graphical model of Gaussian random variables with covariance

matrix Σ, xi and xj are conditionally independent if and only if (Σ−1)ij = 0 .

Corollary 2.5 gives us an extended result to the time series case by replacing the

covariance matrix with the spectral density matrix.

An interesting connection is proved by [Dah00]. If S(ω)−1 exists for all ω ∈ [−π, π]

and let G(ω) = S(ω)−1, then

RAB|C(ω) = −
GAB(ω)

√

GAA(ω)GBB(ω)
. (2.16)

This result can be verified easily from

GAB(ω)
√

GAA(ω)GBB(ω)
= −

SAB − SACS−1
CCSCB

√

SBB − SBCS−1
CCSCB

√

SAA − SACS−1
CCSCA

= −
SAB|C

√

SBB|C · SAA|C

= −RAB|C(ω).

Conditional Independence Graph

We have described the definition of conditional independence and some specific re-

sults for Gaussian time series. This leads to the definition of a conditional indepen-

dence graph as follows.

The conditional independence graph associated with a multivariate stationary

process {x(t), t ∈ Z} is a graph G = (V, E) which consists of a vertex set V and edge

set E such that

A—B /∈ E ⇐⇒ xA ⊥⊥ xB|xC

for all A 6= B and C = V \ {A, B}.

For Gaussian time series, the existence of an edge is determined by zeros in the

inverse of spectral matrix. In order to learn the graph structure, one must estimate

the spectrum subject to each of all possible conditional independence constraints and

select the best topology by applying some model selection criterion. Next chapter

will present a parametric estimation problem which combines this constraint with

the formulation.
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Chapter 3

Model estimation

This chapter considers conditional maximum-likelihood estimation of autoregres-

sive models with conditional independence constraints. We show that the constraints

can be characterized by quadratic equalities on the model parameters which results

in a nonconvex problem. The main result is to propose a convex formulation with

a change of variable and prove that our method provides optimal solutions to the

original problem.

3.1 Maximum likelihood estimation

Consider a multivariate autoregressive model of order p

yk = −A1yk−1 − A2yk−2 − · · · − Apyk−p + wk, (3.1)

where wk is a Gaussian white noise with covariance matrix Σ, yk ∈ Rn and Ak ∈

Rn×n. Premultiplying Σ−1/2 on both sides of (3.1) so as to normalize the covariance

matrix of the input noise gives

B0yk = −B1yk−1 − B2yk−2 − · · · − Bpyk−p + vk, (3.2)

where vk ∼ N (0, I) and B0 = Σ−1/2. Ak and Bk are related by Bk = Σ−1/2Ak.

We are interested in maximum-likelihood estimation based on N +p observations,

y1, . . . , yN+p. The exact likelihood function is highly nonlinear in Ak. Therefore, a

simple approach is to condition on the first p observations, y1, . . . , yp and estimate

based on the last N observations. To this end, we will write (3.1) in a vector form
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and define A =
[

A1 A2 . . . Ap

]

and the observation matrix

YN+p ,

[

y1 y2 . . . yp yp+1 yp+2 . . . yN+p

]

=
[

H0 H1

]

.

From (3.1),

H1 = −A















yp yp+1 . . . yN+p−1

yp−1 yp . . . yN+p−2

...
... . . .

...

y1 y2 . . . yN















+
[

wp+1 wp+2 . . . wN+p

]

= −AH2 + W.

The conditional density function of the last N observations given the first p initial

states, is

f(H1|H0) =
1

(2π)nN/2 det(Σ)N/2
exp

{

−
1

2
tr
(

Σ−1(H1 + AH2)(H1 + AH2)
T
)

}

.

The log-likelihood function corresponding to the conditional density function is, up

to a constant,

log L(A, Σ) = −
N

2
log det Σ −

1

2
tr
[

Σ−1(H1 + AH2)(H1 + AH2)
T
]

. (3.3)

By making change of variables, we can also derive the log-likelihood function in terms

of Bk. Let B =
[

B0 B1 . . . Bp

]

and note that Bk = Σ−1/2Ak. It can be verified

that (3.3) is equivalent to

log L(B) = N log det B0 −
1

2
tr
(

BHHTBT
)

, (3.4)

where

H =

[

H1

H2

]

=















yp+1 yp+2 . . . yN

yp yp+1 . . . yN−1

...
...

...

y1 y2 . . . yN−p















.

If we define

R =
HHT

N
, (3.5)
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then the log-likelihood function in (3.4) becomes

log L(B) = N log det B0 −
N

2
tr
(

RBT B
)

. (3.6)

Without conditional independence constraints, we can solve the unconstrained prob-

lem either from (3.3) or (3.6). It is known that the optimal solution to the uncon-

strained ML problem yields the least-square solution.

We characterize the conditional independence constraints in terms of AR param-

eters. Define polynomial matrix functions

A(z) = I + z−1A1 + · · ·+ z−pAp,

B(z) = B0 + z−1B1 + · · ·+ z−pBp.

The inverse z-spectrum of the output in (3.1) is

S(z)−1 = A(1/z̄)HΣ−1A(z)

= B(1/z̄)HB(z)

= Y0 +

p
∑

k=1

(

z−kYk + zkY T
k

)

, (3.7)

where,

Yk =

p−k
∑

i=0

AT
i Σ−1Ai+k

=

p−k
∑

i=0

BT
i Bi+k, (3.8)

for k = 0, . . . , p.

The conditional independence constraints in (2.15) can be expressed as

(S(ω)−1)ij = 0, ∀ω ∈ [−π, π] ⇐⇒ [Yk]ij = [Yk]ji = 0, ∀k = 0, . . . , p, (3.9)

for all (i, j) ∈ V where V is the index set of the sparsity pattern.

The expression of log-likelihood function in (3.6) will be chosen since it is clearly

concave in B, whereas (3.3) is not obviously so, but it can be shown that it is concave

jointly in (Σ, A) in a certain region (see Chapter 5). Furthermore, as we shall see in

the next section, the constraints in (3.9) with the choice of Yk in (3.8) can be cast as

convex constraints.
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The conditional ML estimation problem with the conditional independence con-

straints can therefore be expressed as

minimize − log det B0 + 1
2
tr(RBT B)

subject to Yk =

p−k
∑

i=0

BT
i Bi+k , k = 0, 1, . . . , p

[Yk]ij = [Yk]ji = 0, ∀k = 0, . . . , p ∀(i, j) ∈ V.

(3.10)

The variables are B0 ∈ Sn
++ and Bk ∈ Rn×n , k = 1, . . . , p. This problem is nonconvex

due to the quadratic equalities from the sparsity constraints.

3.2 Convex formulation

This section presents the main contribution of the prospectus. The goal of this work

is to provide a technique for solving (3.10) efficiently. We propose a convex relaxation

problem where a change of variable is introduced. The main result is to prove that

the optimal solution in the relaxed problem has low rank property, i.e., admits no

gap with the true optimal value. Our method thus returns the optimal solution

to (3.10). To this end, we will introduce some notations as follows.

The sparsity pattern of a sparse matrix X ∈ Sn will be characterized by specifying

the set of indices V ⊆ {1, . . . , n} × {1, . . . , n} of its zero entries. We assume V is

symmetric, i.e., if (i, j) ∈ V then (j, i) ∈ V, and that it does not contain any diagonal

entries, i.e., (i, i) 6∈ V for i = 1, . . . , n.

PV(X) denotes the projection of a square symmetric or non-symmetric matrix X

on V:

PV(X)ij =

{

Xij (i, j) ∈ V

0 otherwise.
(3.11)

For ease of notation, we will drop the subscript V from PV(X) and use only P (X)

throughout the text. We use the same notation for P as a mapping from Rn×n →

Rn×n and as a mapping from Sn → Sn. In both cases, P is self-adjoint. If X is a

p × p block-matrix with i, j block Xij , then we define P (X) as p × p block matrix

with i, j block P (X)ij = P (Xij).
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With the above notations, the problem (3.10) is equivalent to

minimize − log det B0 + 1
2
tr(RBT B)

subject to P (

p−k
∑

i=0

BT
i Bi+k) = 0 , k = 0, 1, . . . p

(3.12)

with variable B =
[

B0 B1 . . . Bp

]

∈ Sn
++ ⊕ Rn×np.

The quadratic terms of Bk suggest a change of variable X = BT B. We therefore

propose a convex relaxed problem

minimize − log det X00 + tr(RX)

subject to P

(

p−k
∑

i=0

Xi,i+k

)

= 0, k = 0, . . . , p

X � 0

(3.13)

with variable

X =















X00 X01 · · · X0p

XT
01 X11 · · · X1p

...
...

. . .
...

XT
0p XT

1p · · · Xpp















∈ Sn(p+1).

A first observation from problem (3.13) is that its optimal value is less than or

equal to the optimal value of (3.12), since we have dropped the rank constraint and

minimize the same objective function over a larger set. We therefore say it is a

relaxation. Second, we can conclude that if X has rank n at the optimum, then by

factorizing X = BT B, B must be optimal in (3.12). We will prove this result from

the dual problem.

A special case of (3.13) is when p = 0 (no dynamic in (3.1) or the static case).

As expected, it is the covariance selection problem

minimize − log det X + tr(RX)

subject to P (X) = 0.

In problem (3.13), the matrix R is distinguished from (3.5). It is assumed to be

block-Toeplitz and positive definite. We partition R as

R =















R0 R1 · · · Rp

RT
1 R0 · · · Rp−1

...
...

. . .
...

RT
p RT

p−1 · · · R0














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with R0 ∈ Sn, R1, . . . , Rp ∈ Rn×n. As we shall see, this property is sufficient to

conclude that X has rank n at the optimum.

Dual problem We introduce a Lagrange multiplier Z0 ∈ Sn for the first equality

constraints (k = 0), multipliers 2Zk ∈ Rn×n for equality constraints k = 1 through

p, and a multiplier

U =















U00 U01 · · · U0p

UT
01 U11 · · · U1p

...
...

. . .
...

UT
0p UT

1p · · · Upp















∈ Sn(p+1)

for the inequality constraint. The multipliers Zk will be interpreted as blocks of a

Toeplitz matrix

Z =















Z0 Z1 · · · Zp

ZT
1 Z0 · · · Zp−1

...
...

. . .
...

ZT
p ZT

p−1 · · · Z0















.

The Lagrangian is then

L(X, Z, U)

= − log det X00 + tr(RX) + tr

(

Z0P (

p
∑

i=0

Xii)

)

+ 2 tr

p
∑

k=1

(

ZT
k P (

p−k
∑

i=0

Xi,i+k)

)

− tr(UX)

= − log det X00 + tr(RX) +

p
∑

i=0

tr (P (Z0)Xii) + 2

p
∑

k=1

p−k
∑

i=0

tr
(

P (Zk)
T Xi,i+k

)

− tr(UX)

= − log det X00 + tr((R + P (Z) − U)X).

The dual function is the infimum of L over all X with X00 ≻ 0. L is bounded below

if and only if the following conditions hold:

R0 +P (Z0)−U00 ≻ 0, Rk +P (Zk)−Ui,i+k = 0, k = 1, . . . , p, i = 0, . . . , p−k.

In other words, R + P (Z)−U must be zero, except for the (0, 0) block, which must

be positive definite. If L is bounded below, it is minimized by

X =

[

(R0 + P (Z0) − U00)
−1 0

0 0

]

.
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Hence the dual function is

g(Z0, . . . , Zp, U) = log det(R0 + P (Z0) − U00) + n.

We have derived the dual problem

maximize log det(R0 + P (Z0) − U00) + n

subject to Rk + P (Zk) − Ui,i+k = 0, k = 1, . . . , p, i = 0, . . . , p − k

U � 0.

If we define W = R0 + P (Z0)−U00 and eliminate the slack variable U , we can write

this more simply as

maximize log det W + n

subject to

[

W 0

0 0

]

� R + P (Z).
(3.14)

Note that in the static case (p = 0) this reduces to the maximum determinant

completion problem

maximize log det(R + P (Z)) + n.

Strong duality and optimality conditions We note the following properties of

the primal and dual problem.

• The primal problem is strictly feasible (X = I is strictly feasible), so Slater’s

condition holds. This implies strong duality, and also that the dual optimum

is attained if the optimal value is finite.

• We have assumed that R ≻ 0, and this implies that the primal objective

function is bounded below, and that the primal optimum is attained. This also

follows from the fact that the dual is strictly feasible (Z = 0 is strictly feasible

if we take W small enough), so Slater’s condition holds for the dual.

Therefore, if R ≻ 0, we have strong duality and the primal and dual optimal val-

ues are attained. The KKT conditions are therefore necessary and sufficient for

optimality of X, Z, W . The KKT conditions are:
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1. Primal feasibility.

X � 0, X00 ≻ 0, P (

p−k
∑

i=0

Xi,i+k) = 0, k = 0, . . . , p. (3.15)

2. Dual feasibility.

W ≻ 0, R + P (Z) �

[

W 0

0 0

]

. (3.16)

3. Zero duality gap.

X−1
00 = W, tr

(

X

(

R + P (Z) −

[

W 0

0 0

]))

= 0 (3.17)

Note that tr(XP (Z)) = tr(P (X)Z) = 0 if X satisfies the primal feasibility

constraints, so the inner product in (3.17) reduces to tr(RX) − tr(X00W ) =

tr(RX) − n.

The complementary slackness condition can also be written as

X

(

R + P (Z) −

[

W 0

0 0

])

= 0 (3.18)

(If A, B are positive semidefinite matrices then tr(AB) = 0 if and only if AB = 0.)

Low-rank property of X Assume X∗, W ∗, Z∗ are optimal. We will show that

X∗ has rank n at the optimum.

Proposition 3.1. Let R(p) be a symmetric block-Toeplitz matrix defined as

R(p) =















R0 R1 · · · Rp

RT
1 R0 · · · Rp−1

...
...

. . .
...

RT
p RT

p−1 · · · R0















, Rk ∈ Rn×n, k = 0, 1, . . . , p.

If R(p) satisfies

R(p) �

[

In 0

0 0

]

, (3.19)

then R(p) ≻ 0.
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Proof. We will prove by induction. First of all, it is obvious that R(0) = R0 �

I ≻ 0. Next, we assume that R(p) ≻ 0 and consider

R(p + 1) =

[

R0 R̄

R̄T R(p)

]

, R̄ =
[

R1 R2 . . . Rp+1

]

.

The Schur complement of R0 in R(p + 1) is

R0 − R̄R−1(p)R̄T � I ≻ 0.

Therefore, with the assumption R(p) ≻ 0, we can conclude that R(p + 1) ≻ 0. �

Proposition 3.2. Consider the relaxation problem (3.13). Suppose R is block-

Toeplitz and positive definite. Then there exists a solution X that has rank n at

the optimum.

proof. From the fact that R + P (Z∗) having size n(p + 1) × n(p + 1) in (3.16) is

block-Toeplitz, Proposition 3.1 implies that R + P (Z∗) ≻ 0. Therefore the rank of

the matrix

R + P (Z∗) −

[

W ∗ 0n×np

0np×n 0np×np

]

is at least np, so its nullspace has dimension at most n. From (3.18) we see that

rank(X∗) ≤ n and the constraint X∗
00 ≻ 0 implies rank(X∗) = n. �

This important result shows that under the assumptions that R ≻ 0 and is block-

Toeplitz, the optimal solution X can be factorized as X = BT B and B0 is chosen such

that B0 = X
1/2
00 . In other words, instead of solving the nonconvex problem (3.12),

the convex problem (3.13) which can be solved efficiently, also provides an exact

solution that achieves the true optimal value.

However, the matrix R in (3.5) used in the ML problem, is close to a block-

Toeplitz matrix (in the norm sense), when N is relatively large compared to p. We

conjecture that Proposition 3.2 is also true when R is almost-Toeplitz. This topic

will be further studied in future work.
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Chapter 4

Examples

In this chapter, we present three examples of real data sets from various fields to

demonstrate how the proposed method can facilitate studies of interrelationships in

multivariate time series. We discuss air pollution data, an example from chemistry,

stock return data from economics, and fMRI data from neuroscience.

In order to learn a conditional independence graph, we estimate AR models of

orders p = 1 to pmax subject to all possible sparsity constraints. Let n be the

dimension of a time series. Therefore, the number of edges in the graph is n(n−1)/2

and the total number of all sparsity patterns is

n(n−1)/2
∑

k=0

(

n(n − 1)/2

k

)

= 2n(n−1)/2. (4.1)

Suppose, for a fixed p, we construct the matrix R from (3.5) based on the measure-

ments from the process. For each sparsity constraint and each p, we solved (3.13)

by using CVX [GB08a, GB08b] and decompose the optimal rank-n X to obtain AR

parameters Ak. For each fitted model, we compute AIC (Akaike information crite-

rion), second-order variant of AIC (AICc) or BIC (Bayesian information criterion)

scores [BA02].

AIC = 2k − 2L, (4.2)

AICc = 2k

(

N

N − k − 1

)

, (4.3)

BIC = k log N − 2L, (4.4)

where L is the maximized log-likelihood, N is the sample size, and k is the effective



23

number of parameters. These scores are well-known criteria which are applicable in

problems that the fitting is achieved by maximization of a log-likelihood. AIC may

perform poorly if there are too many parameters compared to the size of sample.

AICc will be recommended to use in this case. When N is large (> e2 ≈ 7.4), BIC

tends to yield a simpler model as can be seen by the log N term which penalizes

more heavily in complex models. We assume that the sample size, N in each data

set may be large enough so that the approximate log-likelihood in (3.6) is close to

the true value used in (4.2)-(4.4).

An autoregressive model of order p has p + 1 parameters, B0 ∈ Sn
+, B1, . . .Bp ∈

Rn×n. Therefore, the number of independent parameters used in the experiment is

k =
n(n + 1)

2
− |V| + p(n2 − 2|V|). (4.5)

Let pval be the optimal value of (3.13) solved for each fitted model. From (3.6),

(3.10), and (3.13), the maximized log-likelihood is

L =
Npval

2
. (4.6)

By comparing these scores from all possible topologies, we can choose the best model

that describes the data set. The spectrum and its inverse from the chosen model

will be compared with the empirical estimate to illustrate the performance of our

method. For this purpose, we will show the plots of normalized spectral density ma-

trix (coherence spectrum) and normalized inverse of spectral density matrix (partial

coherence spectrum).
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4.1 Air pollution data

In this section we will illustrate the proposed convex relaxation problem by appli-

cation to a multivariate time series of air pollution data. The 5-dimensional time

series consists of the concentration of four pollutants, CO, NO, NO2, O3 and the

solar radiation intensity observed from Jan 1, 2006 to Dec 31, 2006 in Azusa, a city

in Los Angeles county, California, USA.

This application has been studied previously in [Dah00] and [Eic06]. The first

paper analyzed the data by a nonparametric frequency domain approach, i.e., deter-

mining the missing edge of the graph from the partial spectral coherence, while the

latter learned the conditional independence graph by fitting the data to AR models

whose parameters were solved by an iterative estimation. In this experiment, we will

estimate AR models constrained by all combinations of sparsity patterns. The best

model will be selected by applying BIC scores to compare those estimated models.

The data were collected in hourly basis from 12AM - 11PM except at 4AM (23

records per day). The original data with sample size N = 8370 contains missing

values which is about 0.26% of the total values. We filled in the data by using linear

interpolation method. The time series of the daily average over one year can be

shown in Fig. 4.1 It agrees with the result from [Dah00] that CO and NO increase

in the morning during rush hours. NO2 consequently increases and O3 also increases

later due to the increase of the solar radiation and NO2.
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Figure 4.1: Average of daily data: CO, NO, NO2, O3, and the solar radiation (R).
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We estimated the models of orders ranging from p = 1 to p = 8. In this example,

N = 8370 is so large that L dominates the penalty term. Therefore, we opt to use

BIC criteria and it was minimized when p = 4 as can be seen in Fig. 4.2 The BIC

scores decrease dramatically from p = 1 to p = 2. The conditional independence

graph that best characterizes the air pollution data is shown in Fig. 4.3
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Figure 4.2: Minimized BIC scores (scaled by 1/N) of p-order models of air pollution

data.

CO

NO2

NOR

O3

Figure 4.3: The conditional independence graph corresponding to the lowest BIC

score for the air pollution data.

Fig. 4.4 shows the estimates of partial coherence and coherence spectrum obtained

from the nonparametric approach and the ML estimates. The shape of spectra from

both methods are fitted reasonably well.

In addition to the best topology, Table 4.1 also consider another best nine models

since the first and the tenth BIC scores are different by only 0.84%. The notation
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Table 4.1: Model selection results: index sets V of the 10-lowest BIC scores of

estimated AR models for air pollution data.

rank p BIC scores V description

1 4 15414
(

2 5
)

NO-R

2 5 15455
(

2 5
)

NO-R

3 4 15461 ∅ −

4 4 15494

(

1 4

1 5

)

CO-O3

CO-R

5 4 15502
(

1 5
)

CO-R

6 5 15509

(

1 4

1 5

)

CO-O3

CO-R

7 5 15512 ∅ −

8 4 15527
(

1 4
)

CO-O3

9 6 15532
(

2 5
)

NO-R

10 5 15544
(

1 5
)

CO-R
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(i j) means that (i, j) ∈ V, or xi and xj are conditionally independent.
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Figure 4.4: Partial coherence and coherence spectra of air pollution data: nonpara-

metric estimates (solid blue lines) and ML estimates (dashed red lines).

From Table 4.1, the lowest BIC scores of each model of order p = 4, 5, 6 corre-

spond to the missing edge between NO and the solar radiation. This agrees with

the empirical partial coherence in Fig. 4.4 where the pair NO-R has visually the

least magnitude. Table 4.1 also suggests that the most likely missing links are the

combinations of (1, 4), (1, 5) or CO-O3, CO-R, respectively. In spite of the fact that

the partial coherence spectra of these pairs are not identically zero, they tends to

have small magnitudes compared to the other pairs.

The strong connections can be explained from [Dah00]. For example, The solar

radiation plays a role in the photolysis of NO2 and the generation of O3. CO and

NO are highly correlated because both of them are generated from cars. The edge

between CO and NO2 shows that the generation of NO2 is mainly from the concen-

tration of CO. The increase of O3 is from the higher level of NO2 and the radiation

intensity.
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4.2 Stock return data

4.2.1 International stock markets

In this experiment, we are interested in a multivariate time series of five major stock

markets in the world. It consists of stock index closing prices of the markets in

U.S., Japan, Hong Kong, United Kingdom and Germany. The study of dynamic

interaction between the international stock markets has been of interest in economic

literatures [ES89], [KP99], [BY03]. The goal of these works is to study how one

stock market reacts to a change in other markets and how rapidly the movement

in one market transmits to the others. The methodologies used in these works are

based on firstly, forecast error covariance decomposition. It is an expression of mean-

squared error of the prediction as a linear combination of variances in orthogonalized

innovations. We can calculate the portion of the total variance of yi due to the

variance of the jth shock (wj). Secondly, an impulse response of AR process with

orthogonalization of the noise can represent the reaction of the ith variable due to

a unit impulse of the jth shock. With this method, they can explain how fast the

movement in one market will affect the others. Last, the residuals or innovations

represent the information that cannot be taken into account on the basis of all past

data. Thus, the contemporaneous correlation matrix of the residual errors indicates

the degree to which new information in one market is shared by the others.

In this prospectus, we would like to apply the conditional independence concept

to study the interactions among international stock markets. This might not give

full answers to the discussion in [ES89], [KP99], and [BY03], i.e., the role of leaders

and followers in the markets cannot be identified. However, the interdependence

between stock markets in two-way sense and the strength of these connections can

be explained in the notion of conditional independence as well.

The data used in this experiment follows from [BY03], but the number of variables

was reduced to five markets. They include

1. S & P 500 composite index (U.S.)

2. Nikkei 225 share index (Japan)

3. Hang Seng stock composite index (Hong Kong)
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4. FTSE 100 share index (United Kingdom)

5. Frankfurt DAX 30 composite index (Germany)

The data were stock index closing prices recorded from June 4, 1997- June 15,1999

available from www.globalfinancial.com. We converted the data into US dollar to

take the volatility of exchange rate into account. Due to nonsynchronous national

holidays in each country, we complete the missing data by the most recent values.

The return between trading day k − 1 and k are defined as

rk = 100(log(pk) − log(pk−1)), (4.7)

where pk is the closing price on day k. This gives five-dimensional time series with

sample size of 528 (N = 528) shown in Fig 4.5. It is known that the stock return data

has high fluctuations due to the fact that it is generally sensitive to many factors

such as news, political situation, or economic conditions.
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Figure 4.5: Daily data of international stock returns in US dollar from June 4, 1997

to June 15, 1999.

We estimate the models of orders ranging from p = 1 to p = 9. AICc score was

used instead of AIC due to the small sample size. Fig. 4.6 shows that AICc and BIC

criteria were minimized when the model order p = 2 and p = 1, respectively. The es-

timates of partial coherence and coherence spectra obtained from the nonparametric

approach and the ML estimates are shown in Fig. 4.8. According to the AICc score,

our method returns missing edges between US-JP and JP-GE while using BIC score
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yields an additional edge between US-HK. The conditional independence graphs that

best characterize the stock index return data are shown in Fig. 4.7. For AICc case,

the shape of spectra appears to fitted in an acceptable level, but not in BIC case

because the estimated model order (p) is too low to capture all characteristics in fre-

quency domain. This is a nature of BIC as a parsimonious model selection method,

which tends to choose a simple model.

For this application, it will give us more insight if the strength of connections are

also considered. As shown in [Bri96], one can examine the strength of connection

between two components by using the concept of partial mutual information between

xA and xB given the remaining variables.

IAB|C = −
1

2π

∫ 2π

0

log
(

1 − |RAB|C(ω)|2
)

dω. (4.8)

We approximate the integral in (4.8) by the numerical Riemann sum as plotted in

Fig. 4.9. It shows that UK and GE are highly correlated because there are much

more transactions and business among the countries in Europe. US has the most

interaction with GE and less with Asian countries.

From the methodologies in [BY03], more precisely, by using forcast error decom-

positions, they found that the German market has the most impact on the European

markets. Especially, the UK market is substantially influenced by the German mar-

ket. The Japanese market is highly exogenous, i.e., a change or information from

other markets explains a price movement in Japan moderately. Also, a movement in

Japan influences relatively little to other markets. These findings are consistent to

a high IAB|C between GE-UK and a temperate IAB|C between JP and other markets

in Fig. 4.9. The model selection results in Table 4.2 also support that the Japanese

market tends to be isolated from the others, as the indices (1, 2), (2, 5), (2, 4) appear

repeatedly in the best five models. Another result from [BY03] is that the con-

temporaneous structure of innovations showed that the volatility in the US market

transmits to the world through Germany and Hong Kong. A similar result in our

experiment can be seen from a relatively high level of partial mutual information

between US-GE.

Our results may not fully support the previous works in all aspects since our

methodology is different and the dimension of time series has been reduced. The

dependence between two variables may still exist if they are correlated via a common
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variable which has been removed. However, we select the major countries from

Americas, Asia, and Europe and they should be able to represent the characteristic

of each region in this particular period in a certain level.
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Figure 4.6: Minimized AICc/BIC scores (scaled by 1/N) of p-order models for inter-

national stock returns.
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Figure 4.7: The conditional independence graph corresponding to the lowest

AICc/BIC scores for international stock returns.
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Table 4.2: Model selection results: index sets V of the 5-lowest AICc/BIC scores of

estimated AR models for international stock returns.

rank p AICc scores V countries p BIC scores V countries

1 2 4645.5

(

1 2

2 5

)

US-JP

JP-GE
1 4789.65









1 2

1 3

2 5









US-JP

US-HK

JP-GE

2 2 4648.0
(

1 2
)

US-JP 1 4791.47

(

1 2

2 5

)

US-JP

JP-GE

3 1 4651.1

(

1 2

2 5

)

US-JP

JP-GE
1 4792.36









1 2

2 5

3 4









US-JP

JP-GE

HK-UK

4 1 4651.6
(

1 2
)

US-JP 1 4795.80









1 2

1 3

2 4









US-JP

US-HK

JP-UK

5 2 4653.1
(

2 5
)

JP-GE 1 4796.51









1 2

1 4

2 5









US-JP

US-UK
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Figure 4.8: Partial coherence and coherence spectra of international stock returns:

nonparametric estimates (solid blue lines) and ML estimates (dashed red lines) based

on AICc and BIC criterions.
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Figure 4.9: Estimates of partial mutual information for international stock returns.
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4.2.2 European Markets

In this example, we particularly focus on European stock markets. It consists of

stock index closing prices of the markets in United Kingdom, France, Germany,

Italy and Austria during Jan 1,1999 to Jul 31, 2008. All of these countries except UK

have joined European Monetary Union (EMU) introduced since 1990. EMU is the

agreement among the participating member states of the European Union to adopt a

single hard currency and monetary system. On Jan 1,1999 the Euro currency became

a legal currency. Its advantage is to eliminate the currency exchange fees from the

cost of doing business between the European states. Therefore, by considering the

data from the above period, we expect an integration of economics which results in

highly dependencies among these countries. Despite of not being a member in EMU,

UK was included in this model since it is known to be the leading market in Europe

and expected to have strong linkages with EMU markets. The first four countries

are considered large markets in terms of market capitalization. Austria, on the other

hand, is classified as a small market and will be used to investigate how the large

and small markets would affect to each other.

The relationships among European stock markets has been discussed in several

papers. For example, [FS97] examined the data from 1988-1994 and found that the

large markets (UK, France, Germany, and Netherlands) are highly correlated, but the

smaller markets such as Belgium and Denmark are more independent. They showed

that UK is the leading market which affects France, Germany, and Netherlands.

The effect of EMU on the European market was studied in [YML03]. Their results

indicate that the large EMU markets (Germany, France, Italy, Netherlands) became

more correlated while the small markets (Austria, Belgium, and Ireland) became

more independent from other EMU markets after the EMU has been introduced.

They also found that the EMU markets appear to become less integrated with the

non-member country (UK). The integration of stock markets within EMU members

was also found in [KMW05]. They claimed that the overall comovement was a result

from the introduction of the euro. Additionally, this effect is only significant for the

small EMU members whose backgrounds in economic structure are different.

We analyzed the data in the same way as presented in section 4.2.1. The 5-

dimensional time series includes the stock index prices from the following markets.
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1. FTSE 100 share index (United Kingdom)

2. CAC 40 (France)

3. Frankfurt DAX 30 composite index (Germany)

4. MIBTEL (Italy)

5. Austrian Traded Index ATX (Austria)

The data were stock index closing prices recorded from Jan 1,1999-Jul 31, 2008

available from www.globalfinancial.com. The stock index price of UK was converted

into Euro currency. The stock returns was computed from (4.7) and this yields a

five-dimensional time series of European stock index returns with sample size of 2458.

The model orders (p) range from 1 to 20 and we found that the optimal model

order is 16 and 1, based on AIC and BIC scores respectively, shown in Fig 4.10.

The best topology from AIC scores has missing edges between UK-GE and FR-

AU. However, the model of order 16 seems to overfit the spectrum. We decided

to select the best model of order p = 14, which has the same topology as p = 16,

to represent the spectral estimates. The best model based on BIC scores explains

that UK-IT, FR-AU, and GE-AU are conditionally independent. These topologies

are graphically summarized in Fig. 4.12 and the corresponding spectral estimates

are shown in Fig. 4.11. The topologies from both scores are slightly different and

have only one common missing link between FR-AU. Nevertheless, both of them

are understandable since their missing edges agree with small magnitudes of the

empirical partial coherence estimates.

The plots of partial mutual information in Fig. 4.13 show that UK-FR, FR-GE,

and FR-IT are highly dependent and IT-GE are correlated in a moderate level. This

supports the hypothesis that the EMU members, especially the large markets are

integrated significantly. The strong linkages among those countries may be partially

explained from the impact of EMU, where the common currency and a single mon-

etary policy will strengthen the market integration. It is interesting to see that UK

has a very strong connection with EMU markets via France only. We can observe

that the small market, Austria is likely to be isolated from other large markets.

These results agree with [YML03] whose data were sampled after EMU launched as

in our case and their results were mentioned previously.



37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3

3.05

3.1

3.15

sc
al

ed
 A

IC

model order (p)

(a) AIC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

sc
al

ed
 B

IC

model order (p)

(b) BIC

Figure 4.10: Minimized AIC/BIC scores (scaled by 1/N) of p-order models for Eu-

ropean stock returns.
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Figure 4.11: Partial coherence and coherence spectra of European stock returns:

nonparametric estimates (solid blue lines) and ML estimates (dashed red lines) based

on AIC and BIC criterions.
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4.3 fMRI data

Recent researches in neuroscience have focused on investigating interactions between

brain areas that are either stimulated by certain tasks or in resting states. Analyz-

ing associations between interested regions could bring some insight understanding

on the brain function to neuroscientists. It is widely accepted that the functional

activity of each subregion can be demonstrated by human functional magnetic res-

onance imaging (fMRI) time series in which most cases, depicts blood oxygenation

level. It is based on the assumption that the more activities the brain has, the higher

level of oxygen will be used. Inference about the functional connectivity can be ex-

plained from the underlying dependence structure of the system. A graph-theoretical

approach has been suggested to accommodate such analysis (see [SSSB05], [Eic05],

Chapter 14 in [SWT06]). This section aims to illustrate how graphical models can

be applied in analysis of fMRI data and demonstrate some preliminary results.

A brain is mainly divided into four anatomical regions, abbreviated by IFG, IFS,

LOT, and STS. Four visual stimuli involved images of pictures and words changing

randomly at a fixed rate. The volunteers were asked to response to these inputs

while the brains were being scanned. Regional mean time series were estimated for

each subject simply by averaging the data over all voxels in each region. This yields

4-dimensional time series associated with four condition codes of stimuli.

The fMRI data is clearly subject to the condition codes. Whereas a reasonable

approach is to include the inputs in the modeling, such as using autoregressive model

with exogenous input (ARX), at the initial state of this work, we simply ignore the

input and keep using an autoregressive model (AR) to describe the dynamics of fMRI

time series. While this model could be brain-unrealistic, it will serve our purpose

of developing methods for further investigation. Examples of using AR models for

fMRI data can be also found in [HPF03] and [VSSBLC+05].

A time series of fMRI data measured from subject A is shown in Fig. 4.14. The

empirical spectra appear to be different from subjects to subjects. We therefore

selected some preliminary results of model selections from three volunteers and they

are illustrated in Fig. 4.16. We fitted AR models of orders ranging from p = 1 to p = 9

for all 64 sparsity patterns. The best model were chosen from AICc criteria since the

data have small sample sizes (N ranges from 540 to 648) in relation to the number
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of estimate parameters. We present two similar results from the first two subjects

showing that IFG-LOT and IFS-LOT are uncorrelated given the remaining variables.

Moreover, they both have a strong dependency between IFG-IFS. In contrast, the

plot of the last subject indicates no correlation between IFG and STS.
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Figure 4.14: Detrended time series of average fMRI data over all voxels in each of

four brain regions that are activated by four condition codes
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Figure 4.15: The conditional independence graphs corresponding to the lowest AIC

scores for fMRI data.

The preliminary results show that for each individual data, our method generally

selects the best topology of which spectrum acceptably fits the empirical estimate.

Our ultimate goal on this application is to have consistent results for most subjects

and improve the modelling, in which the inputs must be included in the model.
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Figure 4.16: Spectral estimation results of fMRI data from subject A, B, and C

shown in each row. The right column shows nonparametric estimates (solid blue

lines) and ML estimates (dashed red lines) based on AICc.
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Chapter 5

Granger causality

Chapter 2 has described the integration between a graph theory and the concept

of conditional independence for identifying the interactions among variables. In this

chapter we investigate another concept of such interaction and discuss graphical

models in which the direction of connections is exploited for causal inference. We

discuss the concept of Granger causality which has been extensively used for economic

time series and follow a graphical framework from [Eic07] and Chapter 14 in [SWT06].

Our result is to provide a convex formulation for learning graphical models encoded

by Granger causality constraints.

5.1 Definition

The idea of Granger causality is based on the concept that a cause cannot come

after the effect. If a variable x affects a variable z, the former should help to improve

the predictions of the latter variable [Lüt93]. To define this mathematically, suppose

Ω(t) is the information set containing all available information up to the present time

t. Let zt(h|Ω(t)) be the optimal h-step predictor of the process zt at the origin t,

based on the information in Ω(t). By optimal, we use mean-squared error (MSE)

as a criterion. Let Σz(h|Ω(t)) be the corresponding error covariance matrix. The

process xt is said cause zt in Granger’s sense if

Σz(h|Ω(t)) < Σz(h|Ω(t) \ {xs|s ≤ t}) for at least one h = 1, 2, . . .
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In other words, xt Granger-causes zt if zt can be predicted more efficiently when the

information of xt is taken into account in addition to all other information in the

universe.

Furthermore, we say that there is instantaneous causality between zt and xt if

Σz(1|Ω(t) ∪ {xt+1}) 6= Σz(1|Ω(t)).

In another word, consider the period t, if we add xt+1 to the data set, it will make a

difference in the prediction of zt+1. It can be shown that this definition of causality

is symmetric, i.e., if there is instantaneous causality between zt and xt, there is also

instantaneous causality between xt and zt.

Consider a multivariate autoregressive model of order p.

yk = −A1yk−1 − A2yk−2 − · · · − Apyk−p + wk, (5.1)

where wk is a Gaussian white noise with the covariance matrix Σ, yk ∈ Rn and

Ak ∈ Rn×n. The concept of Granger-causality can be characterized nicely as follows.

Proposition 5.1. Let yk be a multivariate AR process described in (5.1). Then we

say yj Granger-causes yi if and only if

[Ak]ij = 0 , ∀k = 1, 2, . . . p. (5.2)

Moreover, there is no instantaneous causality between yi and yj if and only if

Σij = 0. (5.3)

Proof. See [Lüt93].

[Eic07] and [SWT06] (Chapter 14) have provided a graph-theoretical framework

to represent causal inference under Granger-causality conditions. Path diagrams

illustrating the dependence structure of a multivariate time series were introduced

as follows.

Definition 5.2. Let y be a multivariate time series with autoregressive description

in (3.1). The path diagram associated with y in a graph G(V, E) with a vertex set

V = {1, 2, . . . , n} and an edge set E such that

1. j → i /∈ E ⇐⇒ [Ak]ij = 0 for all k = 1, . . . , p and
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2. i — j /∈ E ⇐⇒ Σij = 0.

The path diagrams defined aboved contain two types of edges. The presence

of directed edges j → i implies that yj Granger-causes yi. The graph contains an

undirected edge i — j if and only if yi and yj are instantaneously correlated.

Like conditional independence graphs, inference on causal structures in multivari-

ate time series encoded by Granger causality can be determined by fitting graphical

vector autoregressive models. If a graph G(V, E) is given, we estimate an AR model

subject to the constraints in Definition 5.2. Chapter 14 in [SWT06] suggested one

iterative algorithm for fitting such model, but we will show in the next section that

this can be done efficiently in a convex framework as well.

5.2 Maximum likelihood estimation

We are interested in a maximum-likelihood estimation based on N + p observations,

y1, . . . , yN+p. From (3.3), the approximate log-likelihood function is, up to a constant,

log L(A, Σ) = −
N

2
log det Σ −

1

2
tr
(

Σ−1(H1 + AH2)(H1 + AH2)
T
)

. (5.4)

Setting the gradient of (5.4) with respect to A and Σ gives

2H2(H1 + AH2)
T Σ−1 = 0, (5.5)

NΣ − (H1 + AH2)(H1 + AH2)
T = 0. (5.6)

Assume that all rows of H2 are linearly independent. The unconstrained ML

estimates of A and Σ are

Σ̄ = 1
N

(H1 + AH2)(H1 + AH2)
T ,

Ā = −H1H
T
2 (H2H

T
2 )−1,

(5.7)

which are just the estimates from the least-square problem. Now suppose the con-

straints on Granger causality (5.2), (5.3) are imposed. We will show that it can be

formulated as a convex optimization problem. We first express the log-likelihood

function in (5.4) as

log L(A, Σ) = −
N

2

(

log det Σ + tr(Σ−1Σ̄) + tr[Σ−1(A − Ā)S(A − Ā)T ]
)

. (5.8)
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By making use of (5.5),

(H1 + AH2)(H1 + AH2)
T

=
[

(H1 + ĀH2) + (A − Ā)H2

] [

(H1 + ĀH2) + (A − Ā)H2

]T

= (H1 + ĀH2)(H1 + ĀH2)
T + (A − Ā)H2H

T
2 (A − Ā)T . (5.9)

Define

S =
H2H

T
2

N
. (5.10)

The last term in (5.4) can be expressed as

tr
[

Σ−1(H1 + AH2)(H1 + AH2)
T
]

= N tr(Σ−1Σ̄) + N tr[Σ−1(A − Ā)S(A − Ā)T ],

(5.11)

and (5.8) will be readily obtained.

The log-likelihood function in (5.8) includes a convex term (− log det Σ), so ob-

viously it is not concave. However, we can show that log L is concave, jointly in Σ

and A [BV04], in the region defined by

Σ � 2Σ̄.

This shows that we can use convex optimization to compute ML estimates of Σ and

A, subject to convex constraints, as long as the constraints include Σ � 2Σ̄. We can

make justification that the estimate Σ should not exceed twice the unconstrained ML

estimates. In order to prove the convexity of the log-likelihood function, we need the

following result.

Proposition 5.3. The function f : Sn
++ → R defined as

f(X) = log det(X) + tr(X−1Y ),

is convex on dom f = Sn
++ if X � 2Y , where Y ∈ Sn

+ is given.

proof. Define the first and second directional derivative of f(X) in the direction

V :

d

dt
f(X + tV )

∣

∣

∣

∣

t=0

= tr(∇f(X)TV ),

d2

dt2
f(X + tV )

∣

∣

∣

∣

t=0

= tr(V ∇2f(X)[V ]),
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where

∇2f(X)[V ] =
d

dt
∇f(X + tV )

∣

∣

∣

∣

t=0

.

If a function is twice differentiable, it is convex if and only if its Hessian is positive

definite. The gradient and Hessian of f are given by

∇f(X) = X−1 − X−1Y X−1,

∇2f(X)[V ] = −X−1V X−1 + X−1V X−1Y X−1 + X−1Y X−1V X−1.

We will show that tr(V ∇2f(X)[V ]) � 0 for all V :

tr(V ∇2f(X)[V ]) = tr
[

−V X−1V X−1 + V X−1V X−1Y X−1 + V X−1Y X−1V X−1
]

= tr
[

−V X−1V X−1 + 2V X−1V X−1Y X−1
]

= tr
[

−X−1/2V X−1/2X−1/2V X−1/2
]

+ tr
[

2X−1/2V X−1/2X−1/2V X−1/2X−1/2Y X−1/2
]

= tr
[

X−1/2V X−1/2(2X−1/2Y X−1/2 − I)X−1/2V X−1/2
]

.

If X � 2Y , then I � 2X−1/2Y X−1/2. Hence, tr(V T∇2f(X)V � 0 for all V , which

implies that f(X) is convex. �

As a result, the first two terms in (5.8) is convex if Σ � 2Σ̄. The last term is a

matrix fractional function in Σ and A, which is convex.

Suppose the Granger-causality constraints are given. The sparsity patterns are

characterized by two sets. Let V1 and V2 be the index sets of Granger-causality con-

straints (5.2) and instantaneous causality constraints (5.3), respectively. In this prob-

lem, V1 is not necessarily symmetric. The projection operators defined as in (3.11)

on sets V1 and V2 are P1 and P2, respectively. We can formulate a convex optimiza-

tion problem of maximum-likelihood estimations with Granger causality constraints

as follows:

minimize log det Σ + tr(Σ−1Σ̄) + tr[Σ−1(A − Ā)S(A − Ā)T ]

subject to 0 � Σ � 2Σ̄

P1(Ak) = 0 , k = 0, 1, . . . p

P2(Σ) = 0.

(5.12)

The variables are Ak ∈ Rn×n for k = 1, . . . , p and Σ ∈ Sn
++.
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Zero constraints on AR parameters which are one form of linear constriants were

fully treated in [Ham94] and [Lüt93]. A least squares estimator and its extensions

with various asymptotic properties were derived. Estimation under zero restrictions

for Σ is often performed by decomposing Σ = UΛUH and making change of variables

in the recursive equation. Some patterns of zero constraints on Σ are then equivalent

to zero constraints on the new variable, which can be imposed in the least squares

problems.

However, if both restrictions on AR parameters and covariance matrix Σ have to

be imposed in the estimation simultaeneously, it is not evident in [Lüt93] how this

can be carried out. Closest to this goal is the work of Eichler in [SWT06] where an

iterative algorithm of the two steps has been used. Our formulation in (5.12) can be

an alternative approach to serve this purpose.

If no a priori knowledge of sparsity constraints is available, one can compare all

possible models and determine the best topology by minimizing a model selection

criterion such as AIC or BIC as described in Chapter 4.
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Chapter 6

Conclusions

6.1 Summary

We have considered a parametric approach for maximum-likelihood estimation of au-

toregressive models with conditional independence constraints. The zero constraints

on the inverse of spectral density matrix result in nonconvex constraints, leading

to a nonconvex problem which is generally difficult to guarantee a global solution.

We made change of variables and proposed a convex framework which can be solved

efficiently by interior-point algorithms. This allows us to solve a graphical inference

problem by fitting autoregressive models according to all possible topologies and ap-

plying a model selection criterion to determine the best fitted graph. We have also

applied our approach to three sets of real data and they illustrate that our method

performs reasonably well.

6.2 Future plans

There are several interesting issues related to our work. The topics for further studies

are described as follows.

Extension of the proof to non-Toeplitz R

The matrix R defined in (3.5) is in general, a non-block-Toeplitz matrix, while an

assumption in our proof requires this property to conclude the low-rank property of
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the solutions to the relax problem (3.13) . Denote RT a sample covariance matrix

which is of the form

RT =















R0 R1 · · · Rp

RT
1 R0 · · · Rp−1

...
...

. . .
...

RT
p RT

p−1 · · · R0















, Rk =

N−k
∑

j=1

yj+ky
T
j

It is known that RT has block-Toeplitz structure. From the expression of R in (3.5),

RT = R + ∆R.

We can claim that when the sample size (N) is relatively large compared to the

model order (p), ‖∆R‖ will be small and the result in Proposition 3.1 should still be

true. This is confirmed by the experimental results that the numerical solutions to

the convex problem (3.13) generally have low rank. We try to seek a formal proof to

affirm this result.

l1-Penalization

To detect the sparsity pattern of the inverse of spectral density matrix that best

describes the data, the number of subset models that need to be estimated is

n(n−1)/2
∑

k=0

(

n(n − 1)/2

k

)

= 2n(n−1)/2.

For example, if n = 5, we have 1024 candidate models of order p. In practice, the

dimension of a process will often be greater than in this example. For instance, a

brain network typically has a large number of nodes which in the order of hundreds.

As a result, the practicability of this procedure is limited by its computational cost.

We would like to investigate a method that is capable of dealing with this difficulty.

It is well-known that a regularization with an l1-norm can be used as a heuristic

method to find a sparse solution [BV04]. Consider a simple problem

minimize ‖Ax − b‖2 + γ‖x‖1,

where γ is the penalty parameter controlling a tradeoff between the residual error

and the sparsity of x.
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Consider the convex problem (3.13) in an equivalent form,

minimize − log det X00 + tr(RX)

subject to Yk =

p−k
∑

i=0

Xi,i+k , k = 0, 1, . . . , p

[Yk]ij = [Yk]ji = 0, ∀k = 0, . . . , p ∀(i, j) ∈ V.

(6.1)

The goal is to recover the sparsity pattern in Yk automatically. Moreover, the location

of zeros in all matrices Yk must be the same (refer to (3.9)). To accomplish this we

propose the following problem:

maximize log det X00 − tr(RX) + γ‖W‖1

subject to Yk =

p−k
∑

i=0

Xi,i+k , k = 0, 1, . . . , p

−Wij ≤ [Yk]ij ≤ Wij, ∀i 6= j, k = 0, 1, . . . p

X � 0, Wij ≥ 0, ∀i 6= j.

(6.2)

γ is the regularization parameter and W is introduced as a maximum modulus of Yk.

It is obvious that the sparsity of all matrices Yk are the same as the sparsity of W .

By varying γ and solve (6.2), we can plot a trade-off curve between log det X00 −

tr(RX) and ‖W‖1. We then find the smallest γ at which the log-likelihood term

tends to increase slightly. The formulation and the choice of γ may need some

improvements to obtain more satisfactory results.

Applications

Discovering and characterizing functional brain connectivity is an important and

very active research topic in neuroscience. However, the data and methods used in

the analysis vary enormously. Even defining brain connectivity has proven to be

difficult [FFK05, Hor03]. One possible approach is to use the statistical definition of

conditional independence of time series. However, several improvements are needed

to apply our methodology to fMRI data. First, a realistic model must include the

inputs used to stimulate the brain. Second, the inputs which are generally visual

images are categorical inputs. Typically, a dynamical model requires all variables

to have numeric values. It thus seems important to construct an encoding scheme
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that maps these inputs to numeric fields. This can be intuitively modeled as a set

of binary vectors or multiple value thresholds for discriminating one category from

another. However, this approach is often dealt with a basic difficulty that there is

no meaningful correspondence between the generated numbers and the catogorical

inputs.

There is a vast literature on modeling of fMRI data that is relevant for fur-

ther studies and is based on linear time-invariant models [FJT94, BEGH96, Coh97,

JTF97, RKMVC98]. The haemodynamic response in fMRI (HRF) is modeled as a

convolution of a stimulus function and a linear filter. These approaches impose the

shape of the HRF by choosing several types of filter or modeling the stimulus as an

impulse-like function. A recent survey paper discussed wide ranges of models used

in imaging neuroscience [Fri05], starting from anatomical models to some statistical

models.

We also plan to investigate some applications of graphical models with Granger

causality constraints. There is an example of economic data in [Eic07] that we would

like to replicate, since it represents important elements in macroeconomic systems,

and it has been addressed in many studies. Applications on neural systems shown

in [Eic05] [FSGM+07], or [VSSBLC+05] will also be of our interest.
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