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Abstract: Path analysis is a special problem in Structural Equation Modeling (SEM) where its model describes causal
relations among measured variables in a form of multiple linear regression. This work presents an alternative estimation
formulation for a special case problem in path analysis as a convex framework by relaxing an equality constraint of the
original problem. Under a condition on problem parameters, we show that, our optimal solution is low rank and provides
an estimate of the path matrix of the original problem. To solve our estimation problem in a convex framework, we apply
the alternating direction method of multipliers (ADMM) algorithm which is suitable for large-scale implementation. The
performance of this algorithm is demonstrated in numerical experiments.
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1. INTRODUCTION

Structural equation modeling (SEM) is a statistical
technique used for seeking a statistical causal multivari-
ate model in a form of multivariate linear regression of
latent and measured variables. SEM has a long history
since 1980s and is widely used in many behavioral re-
searches such as in psychology [1], sociology [2], busi-
ness [3], and many more; a history background can be
found in [4, §1].

Path analysis is a special problem in SEM where it pro-
vides a model for explaining relationships among mea-
sured (or observed) variables only with additive error
terms. The problem in path analysis starts from construct-
ing a hypothetical model where directional paths from
one variable to another are assumed from a prior knowl-
edge about relationship structure of variables of interest.
The formulation is then to estimate the value of nonzero
entries in the path matrix and the covariance matrix of
model residual errors so that the model-reproduced co-
variance matrix fits well with the sample covariance ma-
trix in an optimal sense, evaluated by various types of cri-
terion functions such as maximum likelihood, ordinary or
weighted least-squares [4, §4]. When the zero structure of
the path matrix is hypothetically given, the resulting esti-
mation problem is called confirmatory SEM which can be
found from many applications in behavioral research. In
contrast, one may seek for a zero structure of the path ma-
trix that best fits the data since its pattern reveals a causal
structure of variables such as a problem of learning brain
connectivity in [5-7]. The latter type of estimation prob-
lem is referred to as exploratory SEM.

Confirmatory and exploratory SEM problems are non-
linear optimization problems in matrix variables with
quadratic equality and positive definite cone constraints.
Many existing SEM commercial softwares, such as LIS-
REL, EQS, Mplus [4, 8, 9], have been developed and
they implement iterative methods, for instance Newton-
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Raphson or gradient descent, to estimate the model pa-
rameters [10, §7], [4, §4], so a starting value for the up-
date is required. Though these numerical methods work
well under normal conditions, it is also known that some
initial values may not lead to the convergence in the op-
timal solution or may stuck into a local minima, hence
several strategies for selecting initial values have been
proposed [4, §4].

In this work, we present an alternative estimation for-
mulation for a path analysis in confirmatory SEM. We re-
lax the original nonlinear equality constraint of the model
parameters to an inequality, allowing us to transform the
problem into a convex formulation that lead to many effi-
cient numerical methods. Our problem can be solved by
the alternating direction method of multipliers (ADMM)
algorithm which is suitable for large-scale implementa-
tion. We also show that, under a condition on problem pa-
rameter, our optimal covariance error is diagonal, mean-
ing that errors are uncorrelated, and the optimal solution
has low rank, providing an estimate of the path matrix for
the original problem. Our estimate agrees with the orig-
inal solution when the assumption on uncorrelated noise
holds. When this does not hold, our solution is not op-
timal for the original problem but it can be served as a
starting value for the iterative algorithm used in the orig-
inal one in case that the convergence is not obtained.

Our paper is organized as follows. Section 2 summa-
rizes the mathematical formulation of path analysis prob-
lem. Section 3 describes our convex formulation for con-
firmatory SEM and shows that the solution can be further
used under the condition of having a low rank solution at
optimum. Numerical methods for solving our formula-
tion in large-scale framework are explained in section 4.
All numerical experiments are demonstrated in section 5
and the conclusions are given in section 6.

Notation. Sn and Sn+ denote the set of n × n symmetric
and positive definite matrices, respectively. For a square
matrix X , tr(X) is the trace of X and diag(X) is a di-
agonal matrix containing diagonal entries of X .



2. BACKGROUND ON PATH ANALYSIS
In this section, we describe the mathematical formu-

lation of path analysis in SEM. The model is given by a
multiple linear regression:

Y = c+AY + ε, (1)

where Y ∈ Rn is the measured (or observed) variables,
c ∈ Rn is a baseline vector, and ε ∈ Rn is the model
error, assumed to be Gaussian distributed. The matrix
A ∈ Rn×n denotes the path matrix where aij represents
a causal relationship among variables in the model, i.e.,
if aij = 0 then there is no path from Yj to Yi. If this
structure is assumed from a priori knowledge, then the
problem of estimating A is called confirmatory SEM.

Let S be a sample covariance matrix of Y , computed
from sample measurements and Σ be the covariance ma-
trix of Y , derived from (1).

Σ = (I −A)−1Ψ(I −A)−T , (2)

where Ψ = cov(ε). An estimation in SEM is to seek for
A and Ψ such that the estimated Σ is closest to S in the
sense that the Kullback-Leiber divergence function,

d(S,Σ) = log det Σ + tr(SΣ−1)− log detS − n,

is minimized, while maintaining that Σ, A and Ψ are re-
lated by (2). Moreover, the structure of the path matrix is
presumably encoded by a model hypothesis: i) Aij = 0
if there is no path from Yj to Yi and ii) we always have
diag(A) = 0, meaning that there is no path from Yi to it-
self. To specify the zero structure ofA, we then define the
associated index set IA ⊆ {1, 2, . . . , n} × {1, 2, . . . , n}
with properties that i) (i, j) ∈ IA if Aij = 0 and ii)
{(1, 1), (2, 2), . . . , (n, n)} ⊆ IA since diag(A) = 0.

Given the index set IA, we define a projection operator
P : Rn×n → Rn×n,

P (X) =

{
Xij , (i, j) ∈ IA,
0, otherwise,

and denote P c = I−P . The operators P c and P are both
self-adjoint, i.e., tr(Y TP (X)) = tr(P (Y )TX) and that
P c(P (X)) = 0. This projection operator will be used
repeatedly in our analysis.

Therefore, with the definition of P and a change of
variable X = Σ−1, the estimation problem correspond-
ing to confirmatory SEM is

minimize − log detX + tr(SX),
subject to X = (I −A)TΨ−1(I −A),

P (A) = 0,
(3)

with variables A ∈ Rn×n,Ψ ∈ Sn+ and Σ ∈ Sn+. The
condition P (A) = 0 basically explains the zero con-
straint on the entries of A, and when there is no extra
information on the path matrix, this condition reduces to
diag(A) = 0.

3. CONVEX FORMULATION FOR
CONFIRMATORY SEM

The problem (3) is obviously nonconvex due to the
quadratic equality constraint. In this section, we pro-
pose an alternative convex formulation and derive its dual
problem. Our main result is that the optimal solution is
useful only when it is low rank, which happens at opti-
mum under a condition on problem parameter and results
in a diagonal covariance error, meaning that the residual
errors are uncorrelated.

Consider a convex relaxation of constraint (2) to X �
(I−A)TΨ−1(I−A). Using a property of Schur comple-
ment on this relaxed constraint, we propose an alternative
convex formulation:

minimize − log detX + tr(SX),

subject to
[

X (I −A)T

I −A Ψ

]
� 0,

0 � Ψ � αI, P (A) = 0,

(4)

with variables X ∈ Sn, A ∈ Rn×n and Ψ ∈ Sn, where
α > 0 is a given parameter. We note that the inequality
constraint Ψ � αI is added to prevent (4) from having a
trivial solution, e.g., Ψ can be arbitrarily large. We justify
that α can serve as an upper bound on the covariance er-
ror in SEM. Throughout this paper, we refer to (4) as the
primal convex SEM which falls into a type of semidefinite
programming. We can see that for a given α, a numerical
solution can be solved by many existing convex program
solvers. One example is CVX which is a MATLAB pack-
age for specifying and solving convex programs [11].

If we define a variable

X =

[
X1 XT

2

X2 X4

]
, X4 = Ψ, X2 = I −A,

we see that P (X2) = P (I) − P (A) = P (I) − 0 = I
(note that the P projects the entries assigned by IA which
includes the diagonal terms). Another equivalent formu-
lation of the primal is

minimize − log detX1 + tr(SX1),

subject to X =

[
X1 XT

2

X2 X4

]
� 0,

0 � X4 � αI, P (X2) = I,

(5)

with variable X ∈ S2n where each Xk has size n × n.
The dual problem of (4) is

minimize − log det(S − Z1)− 2 tr(Z2)− α tr(Z4),

subject to Z =

[
Z1 ZT2
Z2 Z4

]
� 0, P c(Z2) = 0,

(6)

with variable Z ∈ S2n where each Zk has size n×n. The
constraint P c(Z2) = 0 explains that the corresponding
entries of Z2 to the zero entries in A are free, otherwise
they are all zeros. If P (A) = 0 reduces to diag(A) = 0
in the primal convex SEM, then P c(Z2) = 0 in the dual
is simplified to that Z2 is diagonal.



An important assumption of the problem (4) is that S
must be positive definite. Otherwise, the problem could
be unbounded below.

3.1. KKT conditions
The KKT conditions, derived as the optimality condi-

tion for the optimal solution to (4), are:
Zero gradient of the Lagragian

X = (S − Z1)−1. (7)

Complementary Slackness

0 = tr
(
Z
[

X (I −A)T

I −A Ψ

])
, 0 = tr(Z4(Ψ− αI)).

(8)

Primal Feasibility

(I−A)TΨ−1(I−A) � X, 0 ≺ Ψ � αI, P (A) = 0.

Dual feasibility

Z � 0, P c(Z2) = 0.

We will use these conditions to analyze the solution prop-
erties later in the next section.

3.2. Trivial solution
The following proposition states an important result of

our paper:
Proposition 1: Let αc = n/ tr(S−1) (the harmonic

mean of the eigenvalues of S � 0). If α ≤ αc then

S−1 � (I −A)TΨ−1(I −A) (9)

is infeasible in Ψ and A, or that Z = 0 cannot be an
optimal solution for the dual problem (6).

This explains that there is a critical value αc such that
if the optimal dual Z? = 0 then α ≥ αc, i.e., if the trivial
solution in the dual occurs then we have used too large
value of α. From the KKT conditions, if Z? = 0 then
they are reduced to (9), which means Ψ? can be chosen to
be sufficiently large (if α is arbitrarily large) and the RHS
of the above inequality can be sufficiently small. Then
X? = S−1 is then not equal to (I −A?)TΨ?−1(I −A?)
as opposed to the desired equality.

The proof of the above proposition is obtained by ap-
plying a generalization of Farka’s lemma to semidefinite
programming [12]. We opt to omit the detail due to space
limit.

3.3. Low rank solution of the primal convex SEM
The solution of the primal convex SEM is useful if

X = (I − A)TΨ−1(I − A) at optimum or that X is a
low rank solution, so that we can use Σ = X−1. In this
section, we aim to find a relation between the parameter
α and the low rank optimal solution of (4). To show this,
consider complementary slackness condition (8). Using
a property of trace: tr(AB) = 0 ⇐⇒ AB = 0 for
A,B � 0, provides[
Z1 ZT2
Z2 Z4

]
︸ ︷︷ ︸

Z

[
X (I −A)T

I −A Ψ

]
︸ ︷︷ ︸

W

= 0. (10)

The result in (10) further shows that the columns ofW are
in the nullspace of Z. Therefore, we have rank(W ) =
nullity(Z) and that rank(Z) = 2n− rank(W ). Since
X � 0 is an implicit constraint, this implies that X
must be full rank. The rank of W must satisfy n ≤
rank(W ) ≤ 2n and therefore 0 ≤ rank(Z) ≤ n.

We obtain a low rank solution when the optimal primal
of (4) and the optimal dual of (6) satisfy

X = (I−A)TΨ−1(I−A) or equivalently rank(Z) = n,

(because rank(W ) = n). Furthermore, when this holds,
rank(Z4) = n and from (8), it gives Ψ = αI , i.e.,
the estimated covariance error becomes a diagonal ma-
trix. From section 3.2, we have shown that if α is smaller
than αc = n/ tr(S−1), then the optimal dual solution
is not zero. We can show that the minimum eigenvalue
of S satisfies λmin(S) < αc and this suggests that we
can consider three ranges of α where the rank of Z varies
as shown in Figure 1. The value of αc lies somewhere
in the interval of condition that 0 < rank(Z) < n. If

Fig. 1: rank(Z) as α varied.

α = λmin(S), then it is often the case that rank(Z) = n
which will be shown in the numerical experiment sec-
tion. This suggests us that we have put a constraint Ψ �
λmin(S)I � S into the estimation problem. Our justi-
fication is that we control the covariance error to be less
than the covariance of the variables. Therefore, through-
out our numerical experiments, we select α = λmin(S)
so that the problem is likely to return a low rank solution.

4. ALGORITHM
To solve large-scale convex optimization problems, we

opt to use the alternating direction method of multipliers
(ADMM) algorithm which has the superior convergence
properties [13]. From Section 3.3, the low rank solution
holds when α = λmin(S) and it provides Ψ = αI at
optimum, so that, in this case, we can solve (5) by using
a constraint X4 = αI instead of 0 � X4 � αI . To
arrange the problem (5) in ADMM format, let us define
the constraint sets: C1 = Sn+ (positive definite cone),

C2 =

{
V ∈ S2n

∣∣∣∣ V =

[
V1 V T2
V2 αI

] ∣∣∣∣ P (V2) = I

}
,

and define f : S2n → R given by f(X) =
− log det(X1) + tr(SX1), g1 and g2 are indicator func-
tions of sets C1, C2, respectively. The problem (5), with a
replacement of 0 � X4 � αI by X4 = αI , can then be
rearranged into ADMM format as

minimize
X,U,V

f(X) + g1(U) + g2(V ),

subject to X − U = 0, X − V = 0,



with variables X,U, V ∈ S2n. The ADMM algorithm
starts with forming the augmented Lagrangian defined by

Lρ(X,U, V, Y1, Y2) = log det(X1) + tr(SX1)

+ tr(Y T1 (X − U)) + tr(Y T2 (X − V ))

+
ρ

2
‖X − U‖2F +

ρ

2
‖X − V ‖2F ,

where ρ > 0 is called the penalty parameter in which its
value relates to the speed of convergence and enforcing
the equality constraints. Let us denote X and X+ the
variables in current and next iteration. The update rule of
ADMM is to minimize Lρ with respect to X,U, V inde-
pendently and can be described as follows.
X-update. Minimizing Lρ w.r.t. X is the problem

X+ = argmin
X

f(X) + ρ‖X −M‖2F ,

where M = 1
2 (U +V )− 1

2ρ (Y1 +Y2). The zero gradient
condition is[
−X−11 + S 0

0 0

]
+ 2ρ(X −M) = 0,

with an implicit constraint from the domain of f that
X1 � 0. We can apply the method based on eigen-
value decomposition from [13, §6.5] to show that the zero
gradient condition on the (1, 1) block: 2ρX1 − X−11 =
M1 − S, can be achieved with a positive definite X1.
Other blocks of X are simply Xk = Mk, for k = 2, 4.
U -update. Minimizing Lρ w.r.t. U is the problem

U+ = argmin
U�0

‖U −M‖2F , M = X +
1

ρ
Y1.

This is a projection problem onto S2n
+ , the positive defi-

nite cone, and has a closed-form solution [13, §4].
V -update. Minimizing Lρ w.r.t. V is the problem

V + = argmin
V ∈C2

‖V −M‖2F , M = X +
1

ρ
Y2.

The optimal V is the projection of M onto C2, given by

V =

[
M1 (P c(M2) + I)T

P c(M2) + I αI

]
.

Y -update. The update of dual variables are

Y +
1 = Y1 + ρ(X+ −U+), Y +

2 = Y2 + ρ(X+ − V +).

Here U, V are auxiliary variables. At the end X,U and
V must be equal so that we iterate this algorithm until the
residual errors,X−U andX−V , are small enough. The
main cost of ADMM in solving (5) is from the eigenvalue
decomposition in the X-update and U -update only.

5. NUMERICAL EXPERIMENTS
All numerical experiments and corresponding results

are demonstrated in this section, such as simulated exam-
ples under the condition that low rank solutions are ob-
tained, the effect of our problem parameter on such con-
dition, and the performance of the algorithm.

5.1. Low rank solution of the primal convex SEM
To find the condition that leads to a low rank solution,

our simulation starts with generating a sample covariance
matrix (S) as a positive definite matrix in which its eigen-
values are in the range of [1, 20]. Since A has special
structures, i.e., some entries of A are zero including di-
agonal entries, the structure of A is randomly generated
by setting the sparsity of A about 10%. To vary α, we
set α ∈ [0.5λmin(S), 5λmin(S)] with step size 0.02. Us-
ing the problem parameters: S, α and sparsity pattern of
A, we then solve the primal convex SEM (4) for each α.
Solving this problem has been done by CVX package in
MATLAB [11].

Figure 2 shows the difference betweenX (supposed to
be the estimated Σ−1) and (I−A)TΨ−1(I−A) using 50
runs of S with the same n, i.e., solving the primal convex
SEM with one sample of S produces a line in the figure.
The norm of error, ‖X − (I −A)TΨ−1(I −A)‖, is zero
when we obtain the low rank solution. We notice that
the range of α resulting in the low rank solutions does
not depend on n. This often occurs when α ≤ λmin(S).
Therefore, if we solve the primal convex SEM (4) instead
of the original problem (3), we can heuristically choose
α = λmin(S) to obtain a low rank solution.
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Fig. 2: Lines with the same color correspond to the result
from using the same n. Each line in the same color is
distinguished by each run of S. The error betweenX and
(I−A)TΨ−1(I−A) increases as α increases and is zero
when α is sufficiently small relatively to the minimum
eigenvalue of S.

5.2. Large value of α
In this section we show the result of Proposition 1.

The experiment is setup with n = 5 and varying α ∈
[0.5λmin(S), 5λmin(S)], but in this experiment we gen-
erate each S as a positive definite matrix having the same
αc (the harmonic mean of eigenvalues of S) to be 0.5.
We then solve the dual of primal convex SEM and plot a
relationship between rank(Z) and α.

From Figure 3, the experiment has been done with 50
samples of S and the result illustrates that for α ≤ αc, Z∗
cannot be zero. This plot can provide other information,
for instance, Z∗ = 0, when α is large enough, the por-



tion that rank(Z) = n is approximately 74% and the
portion that rank(Z) < n is approximately 36%, com-
puted from 50 samples of S. Although, we cannot guar-
antee the relationship between the low rank solution and
rank(Z) with αc but this result can guide us that if we
choose α < αc, we have more chances to get the condi-
tion rank(Z) = n (or more chances to get a low rank
solution).

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

Fig. 3: rank(Z) as α varies. For each S, the condition
rank(Z) = 0 lies on RHS of αc, meaning that ifZ∗ = 0,
α > αc.

5.3. Estimation result
In this section, we verify that if we suppose to know

about true path matrix, defined by Atrue, and variance of
noise, defined by σ2, our estimation formulation can pro-
vide that our estimate, Â, is equal to Atrue. Suppose we
fix S = σ2(I − Atrue)

−1(I − Atrue)
−T . For our ap-

proach, the result of simulation is illustrated in Figure 4.
This simulation has been done by setting n = 5 as α
varies in range [0.0001, 0.02], using step size 0.0001.

In this plot, Figure 4 (top) shows the value of ‖Atrue−
Â‖ as α varies. We observe that Â reaches to Atrue when
α reaches to σ2, meaning that our approach can provide
Â which is equal to Atrue if we choose α = σ2. Figure 4
(middle and bottom) shows the result of perfect fitting,
X = S−1 and the value of objective of (4) is zero (p∗ =
0). This result illustrates that we can get the perfect fitting
when α reaches to σ2. But in the real application, we do
not have information about σ2 from noise, therefore we
can still choose α = λmin(S) that guarantees to obtain
a low rank solution. From this choice of α, the value of
estimated A is not significantly different from Atrue and
X reaches to S−1 but it is not exactly equal.

5.4. Algorithm performance
To see the performance of ADMM algorithm in solv-

ing primal convex SEM, we generate data with n =
50, 100,. . . , 1000, using 50 samples of S for each n, then
solve (5) with a modified constraint: X4 = αI , and plot
the averaged CPU time against with n. The computer’s
specification used in this experiment is: CPU : Intel Core
I5-6400 (2.7 GHz), RAM : 16GB DDR4 BUS2133, HDD
: SATA III 7200 RPM (1TBs), OS : WINDOWS10-64bit
Education. Solving a primal convex SEM with dimen-
sion n involves total number of variables of n(n + 1)/2
(number of variables in X) plus number of paths in A. A
trial problem with n = 1000 and a given pattern in A,
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Fig. 4: Simulation result with n = 5 as α varies. When
α = σ2, we can get a low rank solution and perfect fitting.

resulting in totally 1, 000, 000 variables, requires approx-
imately about 11 minutes. A large-scale setting like this
may not be feasible when implemented with an iterative
method based on the use of Hessian matrix.

Fig. 5: Averaged cpu time used to solve primal convex
SEM. With n = 1000, it takes around 11 minutes.

5.5. Implementation on real fMRI data
To show a promising application of our framework, in

this experiment, we provide a preliminary result of es-
timating path coefficients when two causal structures of
brain signals are assumed. We use the data from StarPlus
fMRI database [14] and average the data over spatial do-
main, resulting in measurements from 23 regions of in-
terest (ROIs), or n = 23. We estimate two path matrices
according the two assumed causal structures illustrated
in Figure 6. We comment that we provide an applicabil-
ity of our work to learn a contemporaneous causal rela-
tion among brain regions where the true network is not
known and we are not trying to validate the results quan-
titatively. The results can be further used in exploratory
SEM where a trade off between the estimated maximum
likelihood and the zero structure in the path matrix of the
best structure is chosen by some model selection criterion
based on chi-squared test or goodness of fit index (GFI).
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Fig. 6: The causal structures from our hypothesis. Capi-
tal letters represent the name of each ROI. The numbers
represent path strength between ROIs.

6. CONCLUSION
In this work, we present an alternative estimation for-

mulation for a special problem of path analysis as a con-
vex framework in which it can be solved by efficient nu-
merical methods. In our analysis, we suggest to choose
α = λmin(S) to obtain a low rank solution which is use-
ful since we can let X be the estimate of Σ−1. Lastly,
we solve primal convex SEM with a modified constraint:
X4 = αI by using an ADMM algorithm where the
main computational cost of our estimation formulation
directly depends on the cost of eigenvalue decomposition
in which it can be performed efficiently. Therefore, our
problem can be solved in a large-scale setting.

Despite a difference in our estimation formulation and
the original one, we believe that our proposed formula-
tions serve two folds. Firstly, unlike previous SEM ap-
plications that only a few variables are of interest, many
applications tend to consider a much larger number of
variables such as fMRI studies where the variables are
neuronal activities and its number is up to thousand. Ex-
isting approaches of learning causal structures in the ex-
ploratory SEM may experience a computational difficulty
in terms of memory storage or convergence. Secondly,
our solution for confirmatory SEM is obtained under an
assumption of homoscedasticity of residual errors, so if

this assumption holds, ours and the original solution co-
incide. Even if it does not hold, so our solution is not
optimal for the original problem but it can be served as a
starting value for the iterative algorithm used in the orig-
inal one in case that the convergence is not obtained.
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