Solar Irradiance Forecasting at Chulalongkorn University

Naebboon Hoonchareon David Banjerdpongchai Wanchalerm Pora Suchin Arunsawatwong Jitkomut Songsiri

Department of Electrical Engineering

CHULA **ENGINEERING**

Foundation toward Innovation

Outline

- Chula team
- resources and facilities
- data preprocessing
- forecasting methods
 - ANN with weather classification
 - time series models
 - model output statistics (MOS)
 - forecasting with cloud motion detection
- discussions on methods and implementation

Chula team members

Professors

professors: Jitkomut, David, Wanchalerm, Suchin, and Naebboon

Chula team members

RAs and engineers: Supachai, Suchakrey, Rujipart, Sarawoot, and Sarawoot

Project overview

our current framework consists of four forecasting methods

- ANN with weather classification
- time series forecasting
- model output statistics (MOS)
- forecasting with cloud motion prediction

Resources

available equipment: rooftop PV system (8+15 kw) + pyrometer

with sensors of: wind speed, wind direction, temperature, relative humidity, UV index, irradiance, power of solar cells

ICT Structure

measurements: sampling period (mostly) is 3 mins

- 1. solar data:
 - solar irradiance
 - solar power
- 2. weather data:
 - temperature
 - relative humidity
 - wind speed
 - wind direction
 - UV index

prediction: provided by TMD (Thailand Meteorological Department)

• forecasted WRF of weather and solar irradiance (10×10 km² on every 3-hour)

Available data of MHS location

Mae Hong Son project has a solar farm of size 3MW (provided by EGAT) measurements: sampling period is 10 mins (but data are mostly incomplete)

- 1. solar data: irradiance and power
- 2. weather data:
 - temperature
 - relative humidity
 - wind speed
 - wind direction
 - UV index
 - pressure

prediction: provided by TMD (Thailand Meteorological Department)

• forecasted WRF of weather and solar irradiance $(3 \times 3 \text{ km}^2 \text{ and hourly})$

- missing-data imputation: irradiance, humidity, temperature, UV, wind speed
- spatial averaging on \hat{I}_{wrf} (over 9 grids)
- data smoothing
- others: depending on the forecasting techniques

simple method: filling the mean of 10-day before and after data

selected after comparisons among linear, spline and PCHIP interpolations

Missing value imputation during August 1-2 (TMD data)

proposed method: filling the mean of data from the same weather type

Data preprocessing

- $\bullet\,$ fit Fourier representations of T and RH
- detect a prior seasonal change from their monotonicity change
- use the prior seasons as labels to train SVM as a weather classifier

forecasted GHI by WRF are available at two times: WRF00 and WRF12

Data preprocessing

Results of spatial averaging

- comparison: no averaging, averaging over 4 grids, averaging over 9 grids
- performance: compare normalized error to the measured GHI
- WRF12 has less error
- \bullet improvement on performance when averaging over $9~{\rm grids}$
- significant improvement is seen at 1PM and 4PM

Forecasting methods

- ANN with weather classification
- time series forecasting
- model output statistics (MOS)
- forecasting with cloud motion detection
- irradiance-power conversion model

ANN with weather classification

assumption:

forecasting models should differ by the following factors

- 1. seasons (summer, rainy, winter)
- 2. weather type of the day (3 types classified by self-organized map or SOM)
- 3. time of the day (morning and afternoon)

these results in $3\times 3\times 2=18$ ANN models

inputs of weather classification: forecasted weather variables by WRF

- WS(t+1), WS(t+2), WS(t+3) wind speed
- T(t+1), T(t+2), T(t+3) temperature

inputs of ANN:

- local measurements: t, I(t), I(t-1), I(t-2)
- classified weather type (to specify which ANN model will be used)
- forecasted weather data by WRF
 - WS(t+1), WS(t+2), WS(t+3)
 - T(t+1), T(t+2), T(t+3)

target of ANN: solar power P(t+1), P(t+2), P(t+3)

ANN with weather classification

using individual ANN (specific to weather type) has reduced the error

best-day prediction in summer, rainy and winter seasons

worst-day prediction in summer, rainy and winter seasons

by assumption, solar irradiance clearly has

- seasonal trends (at least, daily and annual circles)
- been influenced from weather variables (temperature, relative humidity, wind speed, air pressure)

so we consider a seasonal ARIMAX model:

$$\tilde{A}(L)A(L)(1-L^{T})^{D}(1-L)^{d}I(t) = B(L)u(t) + \tilde{C}(L)C(L)v(t)$$
(1)

where L is a lag operator and $A, \tilde{A}, B, \tilde{C}, C$ are polynomials in L

- $\bullet \ d$ is integrated order, determined by differencing I and see the autocorrelation
- T specifies the seasonal period and D is integrated seasonal order
- *u* represents weather variables

to estimate the seasonal period,

- determine dominant frequencies of GHI from FFT, which are $\omega=0.125\pi, 0.25\pi$ and 0.375π
- fit a seasonal trend to: $s(t) = \sum_{i=1}^{3} \sigma_i \sin \omega_i t + \beta_i \cos \omega_i t + \alpha$ by regression

• the dominant frequencies correspond to the periods of 16, 8 and 5.3 hours

two possible ways to handle seasonal effects

- use seasonal ARIMAX models with T = 16 hours
- remove the fitted seasonal trend, s(t) from I(t) and fit to ARIMAX

to include impacts of one-lag weather variables, we consider four models

- 1. seasonal ARIMA with T = 16
- 2. seasonal ARIMAX with T = 16
- 3. ARIMA (after the fitted seasonal trend is removed)
- 4. ARIMAX (after the fitted seasonal trend is removed)

exogenous inputs: temperature, relative humidity, wind speed and air pressure

selected seasonal models: (from model selection criterions)

- SARIMA $(2,2,4)(0,1,1)_{16}$: 2-order AR, 4-order MA
- SARIMAX $(2,2,4)(0,1,1)_{16}$: 2-order AR, 4-order MA, 1-order exogenous term

data: GHI and weather data from TMD during 2011-2014

selected models: when being fitted to I after seasonal trends are removed

- ARIMA(0, 2, 6): no AR, 6-order MA
- ARIMAX(0, 2, 6): no AR, 6-order MA, 1-order exogeneous term

MOS is a multiple linear regression (regress *I* on relevant variables)

$$I(t) = \beta_1 I(t-1) + \beta_2 \operatorname{RH}(t-1) + \beta_3 \operatorname{T}(t-1) + \beta_4 \operatorname{UV}(t-1) + \beta_5 \operatorname{WS}(t-1) + \beta_6 I_{\operatorname{clr}}(t) + \beta_7 \cos\theta(t) + \beta_8 \hat{k}(t) + \beta_9 \hat{I}_{\operatorname{wrf}}(t)$$

goal: use MOS to improve the predicted I from local weather data and \hat{I}_{wrf}

select highly relevant variables in the model using

- partial correlation
- stepwise regression (backward and forward)
- subset regression (and use AIC/BIC)

summary of influential variables on solar irradiance

Methods	Predictors								
	Ι	RH	Т	UV	WS	<i>I</i> _{clr}	$\cos\theta$	\hat{k}	$\hat{I}_{\rm wrf}$
Partial correlation	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark
Forward stepwise							\checkmark		\checkmark
Backward wtepwise	\checkmark	\checkmark		\checkmark			\checkmark		\checkmark
Subset selection									
SSE validation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
AIC training	\checkmark	\checkmark		\checkmark			\checkmark		\checkmark
AIC validation							\checkmark		\checkmark
BIC training	\checkmark	\checkmark		\checkmark			\checkmark		\checkmark
BIC validation							\checkmark		\checkmark

based on the listed method, our selected models are

model 1:

 $\hat{I}_{\text{mos}}(t) = \beta_1 I(t-1) + \beta_2 \text{RH}(t-1) + \beta_3 \text{UV}(t-1) + \beta_4 \cos \theta(t) + \beta_5 \hat{I}_{\text{wrf}}(t)$

model 2: $\hat{I}_{mos}(t) = \alpha_1 \cos \theta(t) + \alpha_2 \hat{I}_{wrf}(t)$

evaluated on validation set:

- WRF mostly over-estimate *I*
- $\hat{I}_{\rm mos}$ improves the prediction from $\hat{I}_{\rm wrf}$

Model output statistics

after selecting relevant variables,

- \bullet use the regression model to predict I
- the regression coefficients are allowed to be adaptive as new data arrive
- apply Kalman filter to recursively estimate those coefficients

Forecasting with cloud motion prediction

our current scheme: forecast every $10\ {\rm mins}$

inputs of ANN:

- grid cloud fraction at time t
- I(t), I(t-1), I(t-2), I(t-3), I(t-4)
- weather data at time t

Cloud detection

Results:

we can identify cloud pixels under various sky conditions

Cloud motion prediction

• RGBs of two sky images from consecutive times are compared using MQD

$$D(\Delta x, \Delta y) = \sum_{i=1}^{N} \sum_{j=1}^{N} |f_1(x_i, y_i) - f_2(x_i + \Delta x), y_i + \Delta y)|$$

• if MQD is low in a certain direction then the cloud should move toward such direction

under investigation

as of October 19, 2017

- data: limited and contain uncertainty in some variables (need cleaning)
- WRF prediction: limited and available in coarse temporal resolution (every 3 hours)
- relevant variables: surprisingly, temperature is not selected but solar zenith angle and predicted WRF are the most influential variables
- ANN forecasting: should develop specific ANN model for each weather type
- time series forecasting: may require recursive forecasting in the online implementation
- MOS and forecasting with cloud: under being experimented

Acknowledgement

special Thank to

- Director Somkuan Tonjan, Numerical Division, Weather Forecast Bureau, Thai Meteorological Department (TMD) for providing the GHI data, WRF forecasting and practical information
- Vichaya Laohanun for missing-value imputation and time series forecasting experiments