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Outline

e Chula team
e resources and facilities
e data preprocessing

e forecasting methods

— ANN with weather classification

— time series models

— model output statistics (MOS)

— forecasting with cloud motion detection

e discussions on methods and implementation
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Project overview

our current framework consists of four forecasting methods

Weather data

Weather data | Weather Classification
(SOM)

Weather type
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Resources

available equipment: rooftop PV system (8415 kw) + pyrometer

with sensors of: wind speed, wind direction, temperature, relative humidity, UV
index, irradiance, power of solar cells



ICT Structure

TMD data
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Available data of CU location

measurements: sampling period (mostly) is 3 mins

1. solar data:

e solar irradiance
e solar power

2. weather data:

e temperature

e relative humidity
e wind speed

e wind direction

e UV index

prediction: provided by TMD (Thailand Meteorological Department)

e forecasted WRF of weather and solar irradiance (10 x 10 km? on every 3-hour)



Available data of MHS location

Mae Hong Son project has a solar farm of size 3MW (provided by EGAT)

measurements: sampling period is 10 mins (but data are mostly incomplete)

1. solar data: irradiance and power
2. weather data:

temperature
relative humidity
wind speed

wind direction
UV index

pressure

prediction: provided by TMD (Thailand Meteorological Department)

e forecasted WRF of weather and solar irradiance (3 x 3 km? and hourly)



Data preprocessing

e missing-data imputation: irradiance, humidity, temperature, UV, wind speed
e spatial averaging on I.s (over 9 grids)
e data smoothing

e others: depending on the forecasting techniques



Data preprocessing Missing values

simple method: filling the mean of 10-day before and after data

Solar irradiance
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selected after comparisons among linear, spline and PCHIP interpolations



Data preprocessing

Missing values

Missing value imputation during August 1-2 (TMD data)
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proposed method: filling the mean of data from the same weather type

10



Data preprocessing

Missing values
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e fit Fourier representations of T and RH

Fourier representations (solid lines) of the temperature and humidity data

SVM classification plot
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e detect a prior seasonal change from their monotonicity change

e use the prior seasons as labels to train SVM as a weather classifier
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Data preprocessing Spatial averaging

forecasted GHI by WRF are available at two times: WRF00 and WRF12
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Data preprocessing Results of spatial averaging
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e comparison: no averaging, averaging over 4 grids, averaging over 9 grids
e performance: compare normalized error to the measured GHI

e WRF12 has less error

e improvement on performance when averaging over 9 grids

e significant improvement is seen at 1IPM and 4PM
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Forecasting methods

ANN with weather classification

time series forecasting

model output statistics (MOS)
forecasting with cloud motion detection

irradiance-power conversion model
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ANN with weather classification

Scheme

Start at 00.00
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1. seasons (summer, rainy, winter)

assumption:
forecasting models should differ
by the following factors

2. weather type of the day (3 types classified by self-organized map or SOM)

3. time of the day (morning and afternoon)

these results in 3 x 3 x 2 = 18 ANN models
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ANN with weather classification inputs

inputs of weather classification: forecasted weather variables by WRF

e WS(t+ 1), WS(t+ 2), WS(t + 3) wind speed
e T(t+1), T(t+2),T(t+3) temperature

inputs of ANN:

e local measurements: ¢, I(t),I(t —1),1(t —2)
e classified weather type (to specify which ANN model will be used)

e forecasted weather data by WRF

— WS(t + 1), WS(t + 2), WS(¢ + 3)
— T(t+ 1), T(t +2), T(t + 3)

target of ANN: solar power P(t + 1), P(t + 2), P(t + 3)
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ANN with weather classification Results

%RMSE (9am.-dpm.)

SUMMER RAINY WINTER ALL SEASONS NO SEASON
FACTOR

M 1 hour ahead W2 hours ahead [ 3 hours ahead

using individual ANN (specific to weather type) has reduced the error
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ANN with weather classification Results

best-day prediction in summer, rainy and winter seasons
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Time series forecasting Models

by assumption, solar irradiance clearly has

e seasonal trends (at least, daily and annual circles)
e been influenced from weather variables (temperature, relative humidity, wind

speed, air pressure)

so we consider a seasonal ARIMAX model:

~ ~

AL)A(L)(1 = LH)P (1 = L)1 (t) = B(L)u(t) + C(L)C(L)v(t) (1)
where L is a lag operator and A A B.C,C are polynomials in L

e d is integrated order, determined by differencing I and see the autocorrelation
e ' specifies the seasonal period and D is integrated seasonal order

e u represents weather variables

19



Time series forecasting Seasonal trend

to estimate the seasonal period,

e determine dominant frequencies of GHI from FFT, which are
w = 0.1257,0.257 and 0.3757

e fit a seasonal trend to: s(t) = 2?21 o, sinw;t + B; cosw;t + o by regression

Curve fitting of GHI using Fourier Series
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e the dominant frequencies correspond to the periods of 16,8 and 5.3 hours
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Time series models Candidate models

two possible ways to handle seasonal effects

e use seasonal ARIMAX models with T = 16 hours

e remove the fitted seasonal trend, s(t) from I(¢) and fit to ARIMAX
to include impacts of one-lag weather variables, we consider four models

1. seasonal ARIMA with T' = 16
2. seasonal ARIMAX with 7' = 16
3. ARIMA (after the fitted seasonal trend is removed)

4. ARIMAX (after the fitted seasonal trend is removed)

exogenous inputs: temperature, relative humidity, wind speed and air pressure
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Time series models Results

data: GHI and weather data from TMD during 2011-2014
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selected seasonal models: (from model selection criterions)

e SARIMA(2,2,4)(0,1,1)14: 2-order AR, 4-order MA
e SARIMAX(2,2,4)(0,1,1)16: 2-order AR, 4-order MA, 1-order exogenous term
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Time series models

Results

data: GHI and weather data from TMD during 2011-2014
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selected models: when being fitted to I after seasonal trends are removed

e ARIMA(0,2,6): no AR, 6-order MA

e ARIMAX(0,2,6): no AR, 6-order MA, 1-order exogeneous term
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Model output statistics Model

MQOS is a multiple linear regression (regress I on relevant variables)

I(£) = BuI(t — 1)+ BoRH(t — 1) + BsT(t — 1) + BsUV(t — 1) + BsWS(£ — 1)
+ Belen(t) + BreosB(t) + Bek(t) + Boluwrt(t)

goal: use MOS to improve the predicted I from local weather data and fwrf

Solar irradiance Relative humidity Temperature
Time Time Time
UV index Wind speed GHI under clear sky condition
> N =
)
- = ~
Time Time Time
Solar zenith angle Clear sky index predicted GHI from WRF
P g
w2
Q <
S ~

Time Time Time
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Model output statistics

Predictor selection

select highly relevant variables in the model using

e partial correlation

e stepwise regression (backward and forward)

e subset regression (and use AIC/BIC)

summary of influential variables on solar irradiance

Methods Predictors
I RH uv WS Iy, cosf J—

Partial correlation v v v v
Forward stepwise v v
Backward wtepwise v v v v v
Subset selection

SSE validation v v v v v v v
AIC training v v v v v
AIC validation v v
BIC training v v v v v
BIC validation v v
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Model output statistics Selected models

based on the listed method, our selected models are

model 1:
fmos(t) = GI(t — 1)+ BoRH(t — 1) + B3UV(t — 1) + By cosO(t) + ﬁg,fwrf(t)

model 2: I,05(t) = o1 cos0(t) + calyre(t)

evaluated on validation set:

e WRF mostly over-estimate [

° fmos improves the prediction
from Ig.¢

Solar irradiance (W/m2)
(e}
o
o

3

27/4117 28/4/17 29/4/17 30/4/17

0 1
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Model output statistics Proposed scheme

Iwrr

Global
measurements

Local
measurements

after selecting relevant variables,

e use the regression model to predict [
e the regression coefficients are allowed to be adaptive as new data arrive

e apply Kalman filter to recursively estimate those coefficients
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Forecasting with cloud motion prediction

our current scheme: forecast every 10 mins

Cloud decision image

Vector fields of motion

Cloud fraction I

{ Weather data )

~—_ -

Predicted irradiance

Predicted power

Cloud detection
(Thresholding technique, and

Homomorphic filtering)

\ 4

Cloud motion prediction

(Particle Image Velocimetry)

\ 4

Cloud fraction calculation
(Grid cloud fraction method)

\ 4

Solar irradiance forecast
(ANN models)

\ 4

Irradiance-Power

conversion

inputs of ANN.:

e grid cloud fraction at time ¢

o I(t),I(t—1),I(t—2),I(t—3),I(t—4)

e weather data at time ¢
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Cloud detection

Post-processing TSI

Results:
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Cloud motion prediction

e RGBs of two sky images from consecutive times are compared using MQD

D(Az, Ay) = ZZLﬁ T3, Yi) — f2(xs + Az), y; + Ay)|

1=1 3=1

o if MQD is low in a certain direction then the cloud should move toward such
direction
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Irradiance-power conversion model

under investigation
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Summary

as of October 19, 2017

e data: limited and contain uncertainty in some variables (need cleaning)

e WREF prediction: limited and available in coarse temporal resolution (every 3
hours)

e relevant variables: surprisingly, temperature is not selected but solar zenith
angle and predicted WRF are the most influential variables

e ANN forecasting: should develop specific ANN model for each weather type

e time series forecasting: may require recursive forecasting in the online
implementation

e MOS and forecasting with cloud: under being experimented
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