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Project overview

our current framework consists of four forecasting methods
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• ANN with weather

classification

• time series forecasting

• model output statistics (MOS)

• forecasting with cloud motion

prediction
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Resources

available equipment: rooftop PV system (8+15 kw) + pyrometer

with sensors of: wind speed, wind direction, temperature, relative humidity, UV
index, irradiance, power of solar cells
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ICT Structure

Cloud Computing & Storage

EGAT-LMS (Solar farm-3MW)
<Every 1 minute>
- Power
- Irradiance
- Temperature
- Wind speed/Direction
- Humidity
- TSI <every 30 second>

CU-LMS
(EE-8kW, Eng100-15kW, Eng4-1kW)
- Power
- Irradiance
- Temperature
- Wind speed
- Humidity

TMD data
NorthTH-3x3 <every 1 hr, 24hrs ahead>
TH-10x10 <every 3 hr, 72hrs ahead>
- Irradiance
- Temperature
- Humidity
- Wind speed/direction
- Low cloud
- Rain

CU-LMS

Properties
- X  vCPU
- Y  GB RAM
- Z  TB HDD

TMD

1Mbps
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Global Forecast System (GFS)
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Available data of CU location

measurements: sampling period (mostly) is 3 mins

1. solar data:

• solar irradiance
• solar power

2. weather data:

• temperature
• relative humidity
• wind speed
• wind direction
• UV index

prediction: provided by TMD (Thailand Meteorological Department)

• forecasted WRF of weather and solar irradiance (10×10 km2 on every 3-hour)
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Available data of MHS location

Mae Hong Son project has a solar farm of size 3MW (provided by EGAT)

measurements: sampling period is 10 mins (but data are mostly incomplete)

1. solar data: irradiance and power

2. weather data:

• temperature
• relative humidity
• wind speed
• wind direction
• UV index
• pressure

prediction: provided by TMD (Thailand Meteorological Department)

• forecasted WRF of weather and solar irradiance (3× 3 km2 and hourly)
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Data preprocessing

• missing-data imputation: irradiance, humidity, temperature, UV, wind speed

• spatial averaging on Îwrf (over 9 grids)

• data smoothing

• others: depending on the forecasting techniques
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Data preprocessing Missing values

simple method: filling the mean of 10-day before and after data
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selected after comparisons among linear, spline and PCHIP interpolations
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Data preprocessing Missing values

Missing value imputation during August 1-2 (TMD data)
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Data preprocessing Missing values

Fourier representations (solid lines) of the temperature and humidity data
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• fit Fourier representations of T and RH

• detect a prior seasonal change from their monotonicity change

• use the prior seasons as labels to train SVM as a weather classifier

11



Data preprocessing Spatial averaging

forecasted GHI by WRF are available at two times: WRF00 and WRF12

13.6397, 100.455 13.6397, 100.547 13.6397, 100.641

13.73, 100.641

13.8203, 100.64113.8203, 100.54713.8203, 100.455

13.73, 100.455
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CU 

Local measurements

13.73, 100.547
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Data preprocessing Results of spatial averaging

WRF00
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• comparison: no averaging, averaging over 4 grids, averaging over 9 grids

• performance: compare normalized error to the measured GHI

• WRF12 has less error

• improvement on performance when averaging over 9 grids

• significant improvement is seen at 1PM and 4PM
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Forecasting methods

• ANN with weather classification

• time series forecasting

• model output statistics (MOS)

• forecasting with cloud motion detection

• irradiance-power conversion model
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ANN with weather classification Scheme

LMS

Weather Classification by SOM

00.00-12.00

TMD

Weather Classification by SOM

12.00-24.00

Start at 00.00 Start at 12.00

Summer Rainy Winter

Type1 Ss1 Rs1 Ws1

Type2 Ss2 Rs2 Ws2

Type3 Ss3 Rs3 Ws3

Summer Rainy Winter

Type1 Sf1 Rf1 Wf1

Type2 Sf2 Rf2 Wf2

Type3 Sf3 Rf3 Wf3

Type1 Type2 Type3 Type1 Type2 Type3Date/Month

𝑊𝑠 𝑡 + 1 , 𝑇 𝑡 + 1 , 𝐼 𝑡 + 1 ,… ,

𝑊𝑠 𝑡 + 12 , 𝑇 𝑡 + 12 , 𝐼(𝑡 + 12)

𝑊𝑠 𝑡 + 1 , 𝑇 𝑡 + 1 , 𝐼 𝑡 + 1 ,… ,

𝑊𝑠 𝑡 + 12 , 𝑇 𝑡 + 12 , 𝐼(𝑡 + 12)

𝑊
𝑠
𝑡
+
1
,𝑇

𝑡
+
1
,…

,

𝑊
𝑠
𝑡
+
3
,𝑇

𝑡
+
3

𝑊
𝑠
𝑡
+
1
,𝑇

𝑡
+
1
,…

,

𝑊
𝑠
𝑡
+
3
,𝑇

𝑡
+
3

12.00-24.00

𝑡,
𝐼
𝑡
,𝐼

𝑡
−
1

𝐼(
𝑡
−
2
)

𝑃 𝑡 + 1 , 𝑃 𝑡 + 2 , 𝑃(𝑡 + 3)

Summer Winter Rainy Summer Winter Rainy
00.00-12.00

𝑡,𝐼
𝑡
,𝐼

𝑡
−
1

𝐼(𝑡
−
2
)

assumption:
forecasting models should differ
by the following factors

1. seasons (summer, rainy, winter)

2. weather type of the day (3 types classified by self-organized map or SOM)

3. time of the day (morning and afternoon)

these results in 3× 3× 2 = 18 ANN models
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ANN with weather classification inputs

inputs of weather classification: forecasted weather variables by WRF

• WS(t+ 1),WS(t+ 2),WS(t+ 3) wind speed

• T(t+ 1),T(t+ 2),T(t+ 3) temperature

inputs of ANN:

• local measurements: t, I(t), I(t− 1), I(t− 2)

• classified weather type (to specify which ANN model will be used)

• forecasted weather data by WRF

– WS(t+ 1),WS(t+ 2),WS(t+ 3)
– T(t+ 1),T(t+ 2),T(t+ 3)

target of ANN: solar power P (t+ 1), P (t+ 2), P (t+ 3)
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ANN with weather classification Results

using individual ANN (specific to weather type) has reduced the error
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ANN with weather classification Results

best-day prediction in summer, rainy and winter seasons
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worst-day prediction in summer, rainy and winter seasons
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Time series forecasting Models

by assumption, solar irradiance clearly has

• seasonal trends (at least, daily and annual circles)

• been influenced from weather variables (temperature, relative humidity, wind
speed, air pressure)

so we consider a seasonal ARIMAX model:

Ã(L)A(L)(1− LT )D(1− L)dI(t) = B(L)u(t) + C̃(L)C(L)v(t) (1)

where L is a lag operator and A, Ã,B, C̃, C are polynomials in L

• d is integrated order, determined by differencing I and see the autocorrelation

• T specifies the seasonal period and D is integrated seasonal order

• u represents weather variables
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Time series forecasting Seasonal trend

to estimate the seasonal period,

• determine dominant frequencies of GHI from FFT, which are
ω = 0.125π, 0.25π and 0.375π

• fit a seasonal trend to: s(t) =
∑3

i=1 σi sinωit+ βi cosωit+ α by regression
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Curve fitting of GHI using Fourier Series

• the dominant frequencies correspond to the periods of 16, 8 and 5.3 hours
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Time series models Candidate models

two possible ways to handle seasonal effects

• use seasonal ARIMAX models with T = 16 hours

• remove the fitted seasonal trend, s(t) from I(t) and fit to ARIMAX

to include impacts of one-lag weather variables, we consider four models

1. seasonal ARIMA with T = 16

2. seasonal ARIMAX with T = 16

3. ARIMA (after the fitted seasonal trend is removed)

4. ARIMAX (after the fitted seasonal trend is removed)

exogenous inputs: temperature, relative humidity, wind speed and air pressure
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Time series models Results

data: GHI and weather data from TMD during 2011-2014
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selected seasonal models: (from model selection criterions)

• SARIMA(2, 2, 4)(0, 1, 1)16: 2-order AR, 4-order MA

• SARIMAX(2, 2, 4)(0, 1, 1)16: 2-order AR, 4-order MA, 1-order exogenous term
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Time series models Results

data: GHI and weather data from TMD during 2011-2014
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selected models: when being fitted to I after seasonal trends are removed

• ARIMA(0, 2, 6): no AR, 6-order MA

• ARIMAX(0, 2, 6): no AR, 6-order MA, 1-order exogeneous term
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Model output statistics Model

MOS is a multiple linear regression (regress I on relevant variables)

I(t) = β1I(t− 1) + β2RH(t− 1) + β3T(t− 1) + β4UV(t− 1) + β5WS(t− 1)

+ β6Iclr(t) + β7cosθ(t) + β8k̂(t) + β9Îwrf(t)

goal: use MOS to improve the predicted I from local weather data and Îwrf

Time

Solar irradiance
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Time

Time
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predicted GHI from WRF

24



Model output statistics Predictor selection

select highly relevant variables in the model using

• partial correlation

• stepwise regression (backward and forward)

• subset regression (and use AIC/BIC)

summary of influential variables on solar irradiance

Methods
Predictors

I RH T UV WS Iclr cosθ k̂ Îwrf
Partial correlation ✓ ✓ ✓ ✓ ✓
Forward stepwise ✓ ✓
Backward wtepwise ✓ ✓ ✓ ✓ ✓
Subset selection

SSE validation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
AIC training ✓ ✓ ✓ ✓ ✓
AIC validation ✓ ✓
BIC training ✓ ✓ ✓ ✓ ✓
BIC validation ✓ ✓
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Model output statistics Selected models

based on the listed method, our selected models are

model 1:

Îmos(t) = β1I(t− 1) + β2RH(t− 1) + β3UV(t− 1) + β4 cos θ(t) + β5Îwrf(t)

model 2: Îmos(t) = α1 cos θ(t) + α2Îwrf(t)
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evaluated on validation set:

• WRF mostly over-estimate I

• Îmos improves the prediction
from Îwrf
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Model output statistics Proposed scheme

Local 
measurements

Kalman filter

Irradiance-Power 
conversion

Regression model

WRF 
forecasting

Define 
WRF domain

GFS
model

Global 
measurements

after selecting relevant variables,

• use the regression model to predict I

• the regression coefficients are allowed to be adaptive as new data arrive

• apply Kalman filter to recursively estimate those coefficients
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Forecasting with cloud motion prediction

our current scheme: forecast every 10 mins

Cloud detection
(Thresholding technique, and 

Homomorphic filtering)

Cloud motion prediction
(Particle Image Velocimetry)

 Cloud fraction calculation 
(Grid cloud fraction method)

Solar irradiance forecast
(ANN models)

Irradiance-Power
 conversion

Cloud decision image Vector fields of motion Cloud fraction Predicted irradiance

Weather data

TSI

Predicted power

inputs of ANN:

• grid cloud fraction at time t

• I(t), I(t− 1), I(t− 2), I(t− 3), I(t− 4)

• weather data at time t
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Cloud detection

Post-processing TSI 

Find position
 of the sun

Compute average intensity 
of whole image 

Low intensity 
image?

Classify cloud pixels by  
thresholding technique

Classify cloud pixels by 
Normalized Red Blue Ratio 

(NRBR) from RGB image

Cloud decision image

Yes No

Reduce intensity around 
circumsolar region 

Results:

we can identify cloud pixels under
various sky conditions

TS
I

Clo
ud

 d
ec

isio
n 

im
ag

e

Clear sky Partly cloudy Overcast
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Cloud motion prediction

f1(xi, yi)

f2(xi+Δx, yi+Δy)

Δx

Δy

• RGBs of two sky images from consecutive times are compared using MQD

D(∆x,∆y) =

N∑
i=1

N∑
j=1

|f1(xi, yi)− f2(xi +∆x), yi +∆y)|

• if MQD is low in a certain direction then the cloud should move toward such
direction
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Irradiance-power conversion model

under investigation
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Summary

as of October 19, 2017

• data: limited and contain uncertainty in some variables (need cleaning)

• WRF prediction: limited and available in coarse temporal resolution (every 3
hours)

• relevant variables: surprisingly, temperature is not selected but solar zenith
angle and predicted WRF are the most influential variables

• ANN forecasting: should develop specific ANN model for each weather type

• time series forecasting: may require recursive forecasting in the online
implementation

• MOS and forecasting with cloud: under being experimented

32



Acknowledgement

special Thank to

• Director Somkuan Tonjan, Numerical Division, Weather Forecast Bureau,
Thai Meteorological Department (TMD) for providing the GHI data, WRF
forecasting and practical information

• Vichaya Laohanun for missing-value imputation and time series forecasting
experiments

33


