Solar Power Forecast for Energy Management Systems in Smart Grid

Thailand-China Joint Public Seminar on Smart Grid and Renewable Energy Forecast

Naebboon Hoonchareon, David Banjerdpongchai Wanchalerm Pora, Suchin Arunsawatwong, Jitkomut Songsiri

Department of Electrical Engineering

CHULA *SNGINEERING*

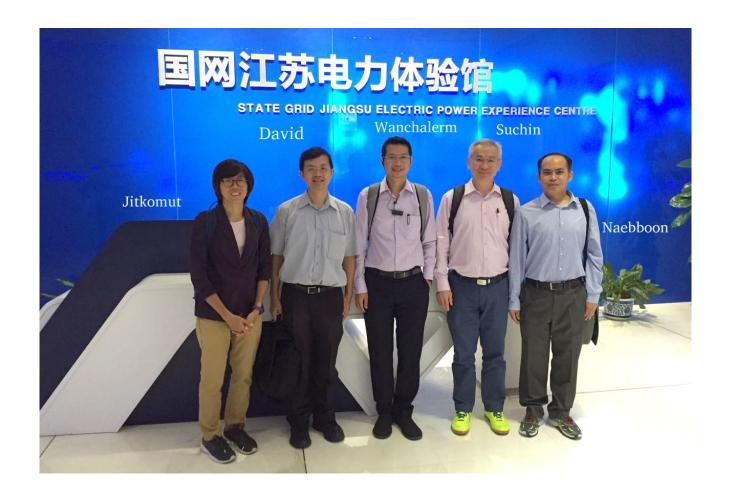
Foundation toward Innovation

- Chula team and collaborators
- resources and facilities
- forecasting models
 - nowcasting
 - very short-term forecasting
 - short-term forecasting
- methods and implementation

Collaboration

Thailand-China Research Collaboration on Renewable Energy (Year 2/3)

Professors



professors: jitkomut.s@chula.ac.th, bdavid.chula@gmail.com, wanchp@gmail.com, suchin.a@chula.ac.th, naebboon@gmail.com

Chula team members

Researchers

Engineers: sarawoot@ndrsolution.com dech_01@hotmail.com

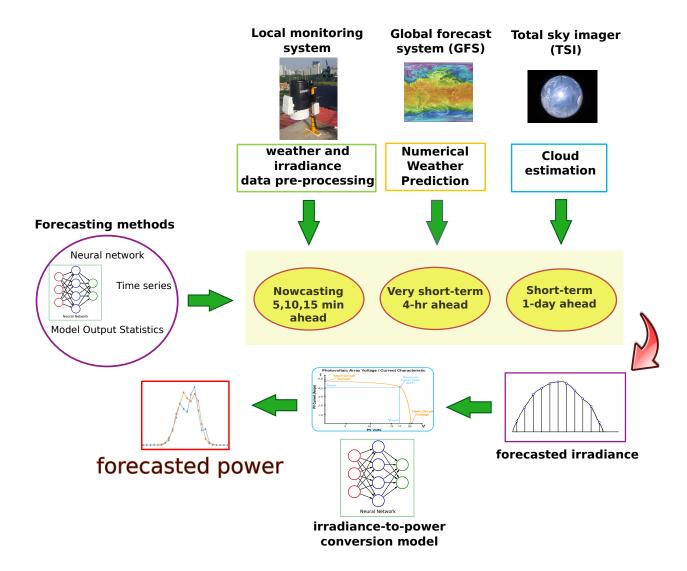
RAs:

suppachai@gmail.com
n.suchakrey@gmail.com
rujipart.kruakaew@gmail.com

we propose models for mainly three forecasting horizons

term	horizon	time step (min)	applications
nowcasting	5,10,15 min	5,10,15	frequency and voltage regulation
very short-term	4 hrs	30	scheduling, load following
short-term	24 hrs	60	planning

Project overview



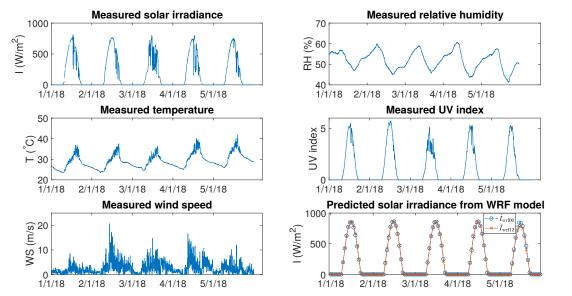
Resources

available equipment: rooftop PV system (8+15 kw) + pyrometer

with sensors of: wind speed, wind direction, temperature, relative humidity, UV index, irradiance, power of solar cells

measurements: sampling period (mostly) is 3 mins

- 1. solar data:
 - solar irradiance
 - solar power
- 2. weather data:
 - temperature
 - relative humidity
 - wind speed
 - wind direction
 - UV index

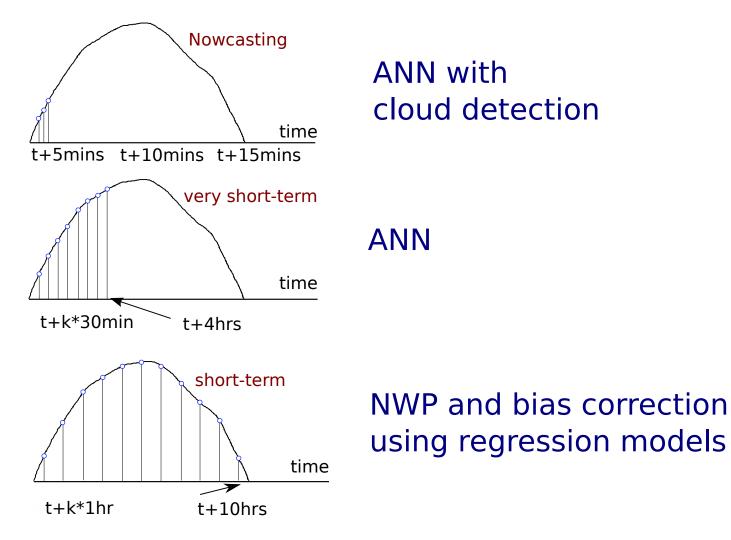


prediction: running on a PC: Intel Xeon E3-1225 3.3GHz, Ram 8GB, HDD 1TB

• hourly forecasted WRF of weather and solar irradiance (on grid $3 \times 3 \text{ km}^2$)

Forecasting methods

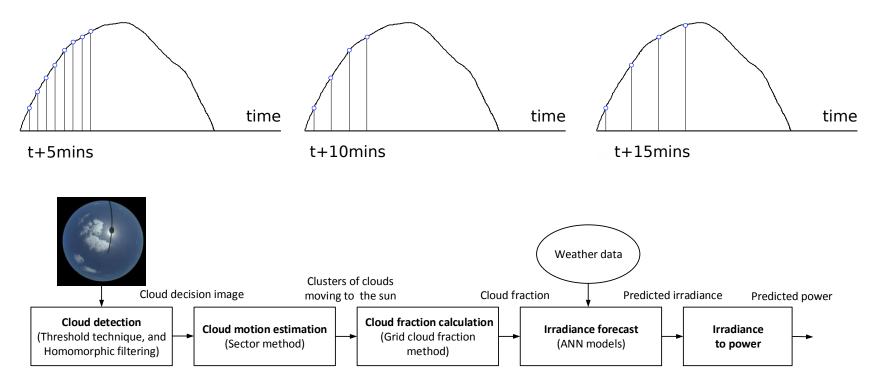
method: forecast solar power from solar irradiance (main input)



Nowcasting

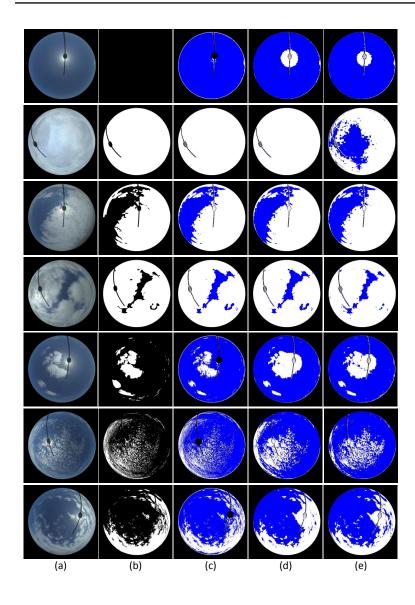
Scheme

goal: provide 3 models with forecast horizon of 5,10,15 mins forecasting time: t moves in one minute



data: weather, irradiance and cloud images from UC Sandiego, USA

Nowcasting

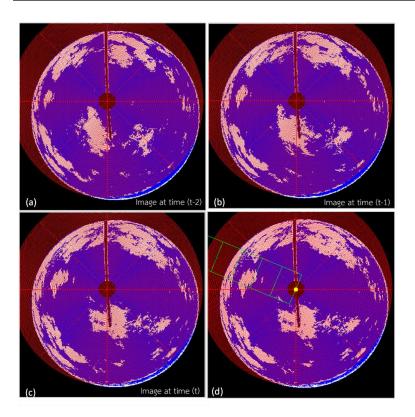


method: homomorphic filtering to reduce brightness around the sun

- row 1: clear sky row 2-4: overcast row 5-6: partly cloudy
- (a) sky image
- (b) ground truth image
- (c) proposed method
- (d) thresholding NBRR method
- (e) thresholding RBD method

Nowcasting

Cloud motion



use sector method to detect which cloud section is moving toward the sun

- (a) image at time t-2
- (b) image at time t-1
- (c) image at time t
- (d) constructing the grid (100×150 pixel) in the direction of cloud motion

calculate the cloud fraction on the grid of cloud moving toward the sun

 $\label{eq:cloud_fraction} \mbox{cloud_fraction} = \frac{\mbox{total cloud pixels}}{\mbox{total cloud pixels} + \mbox{total sky pixels}}$

apply ANN to forecast solar irradiance using 10 inputs:

- cloud information at grids of interest
 - cloud fraction at time t
 - rate of change of cloud fraction at time \boldsymbol{t}
- irradiance measurements: (0,5,10,15 min lags)

$$- I(t) - I(t-5) - I(t-10) - I(t-15)$$

- $\bullet\,$ weather data at time t
 - surface/ambient temperatures
 - wind speed, wind direction
 - relative humidity

forecasting results are reported on the periods of

- 11:00 to 14:30
- 10:00 to 11:00 and 14:30 to 16:00
- 9:00 to 10:00 and 16:00 to 17:00

as the number of cloud grids are different in those periods

three sets of inputs for ANN are considered

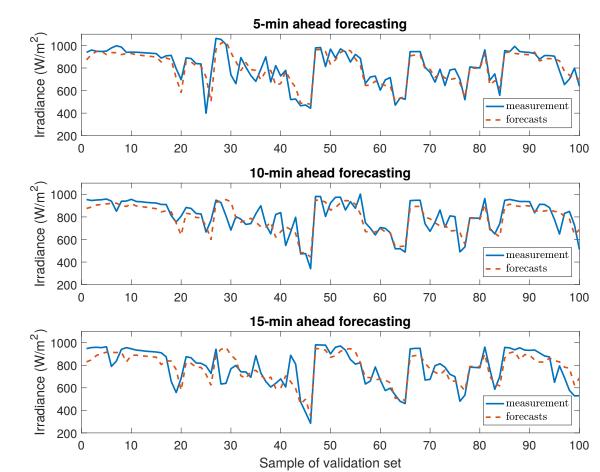
- irradiance measurements only
- irradiance and cloud information
- transformed variables (from ten) by PCA

only data of partly cloudy days were trained in ANN

RMSE of irradiance forecasts (averaged over all time periods)

sets of inputs	5-min model	10-min model	15-min model
irradiance measurements only	72.51	88.27	93.40
irradiance and cloud information	72.40	87.53	92.08
transformed inputs by PCA	72.10	86.65	89.30

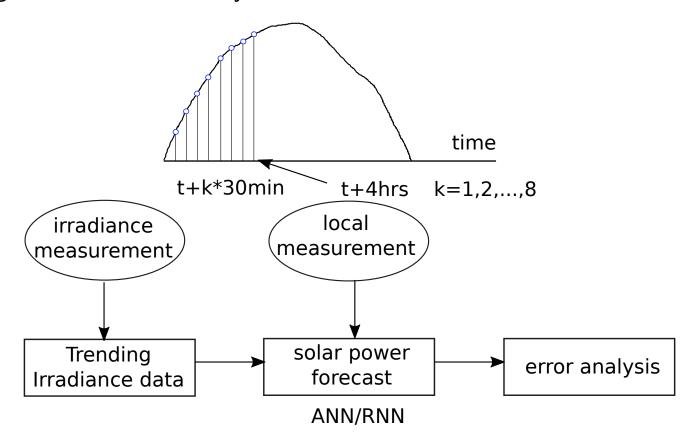
• gradually decreased errors in 10-min and 15-min models when using cloud



example of forecasts from models using PCA inputs

data are validated and plotted from partly cloudy days only

goal: provide solar power forecasts of 30-min time step with horizon of 4 hours forecasting time: t moves every 30 mins



data: weather, irradiance, solar power from solar farm in Mae Hong Son

goal: select relevant inputs for recurrent neural network

- local measurement: at current date (d) and time (t)
 - irradiance I(t)
 - temperature T(t)
 - solar power P(t)
- estimates of one-day-lagged solar irradiance at future times

 $\hat{I}(t), \hat{I}(t+30), \dots, \hat{I}(t+240)$ t is in minute

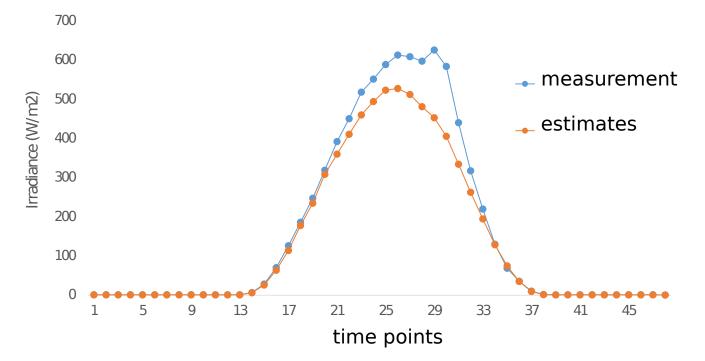
RNN target: solar power at current date and future times

$$\hat{P}(t), \hat{P}(t+30), \dots, \hat{P}(t+240)$$
 t is in minute

goal: estimate one-day-lagged solar irradiance using past measurements

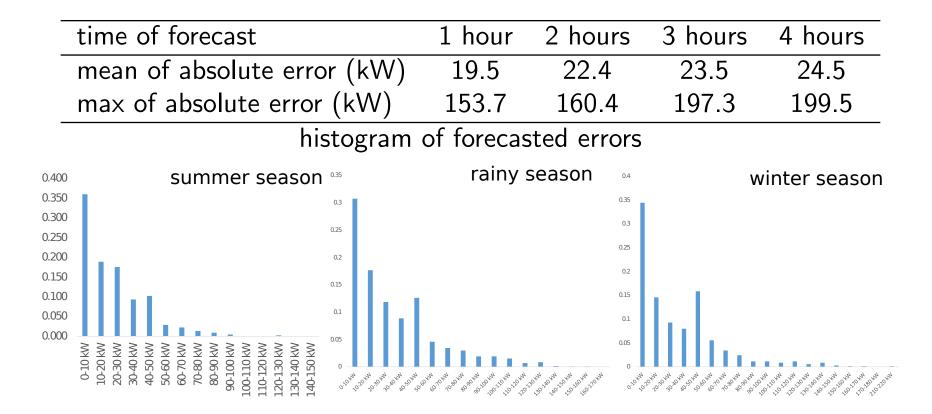
 $\hat{I}(d-1) = \beta I(d-1) + (1-\beta)I(d-2), \quad 0 < \beta < 1$

known as exponential moving average



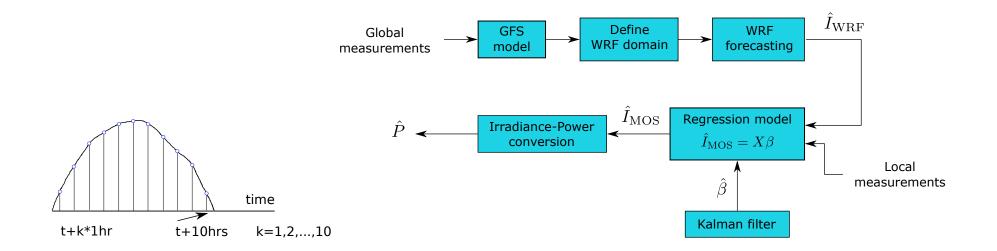
the estimates are evaluated at $t = 30, 60, \ldots, 240$ minutes (8 time points)

forecasting result with install capacity $500\ \rm kW$



more diversion of forecasted errors in rainy and winter (as expected)

goal: provide solar power forecasts of 1-hr time step with horizon of 10 hrs forecasting time: t moves daily



data: WRF forecasts, weather and irradiance at Chulalongkorn university

MOS is a multiple linear regression (regress *I* on relevant variables)

• model 1: 6 regressors

$$I(t) = \beta_1 \hat{I}_{wrf}(t) + \beta_2 \widehat{RH}_{wrf}(t) + \beta_3 \hat{T}_{wrf}(t) + \beta_4 I_{clr}(t) + \beta_5 \cos\theta(t) + \beta_6 \hat{k}_{wrf}(t)$$

• model 2: 3 regressors

$$I(t) = \beta_1 \hat{I}_{wrf}(t) + \beta_2 \widehat{RH}_{wrf}(t) + \beta_3 \hat{T}_{wrf}(t)$$

goal: use MOS to improve predicted I from WRF forecasts and clear sky model

(10-step prediction limits us from using local measurements as regressors)

MOS with varying regression coefficients

$$I(t) = \beta_1(t)x_1(t) + \beta_2(t)x_2(t) + \dots + \beta_n(t)x_n(t)$$

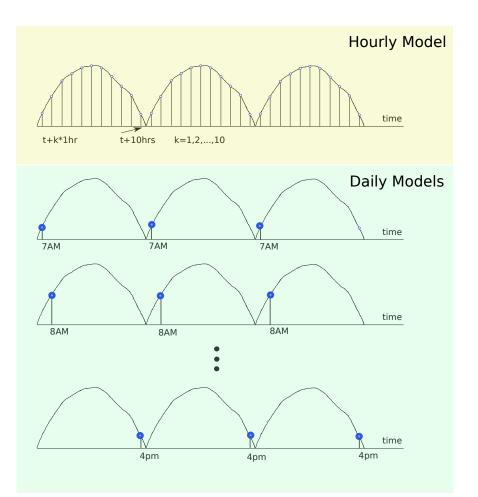
regression in state-space form:

$$\beta(t+1) = \beta(t) + w(t), \quad I(t) = \begin{bmatrix} x_1(t) & \cdots & x_n(t) \end{bmatrix} \beta(t) + v(t)$$

and use KF to estimate the state $(\hat{\beta}(t))$ and output $(\hat{I}(t))$

- assume random walk model on the regression coefficients
- process and measurement noise covariances are estimated from residual errors

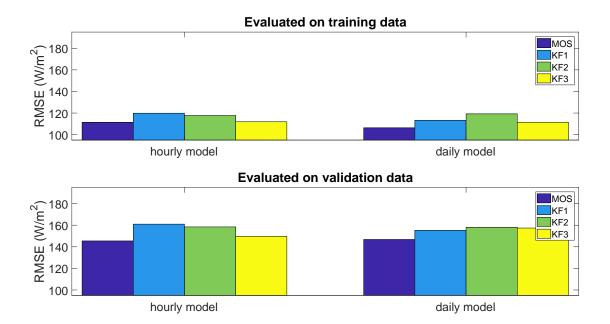
both MOS and MOS+KF are implemented in two time scales



hourly: single model and t runshourlydaily: 10 models and t runs daily

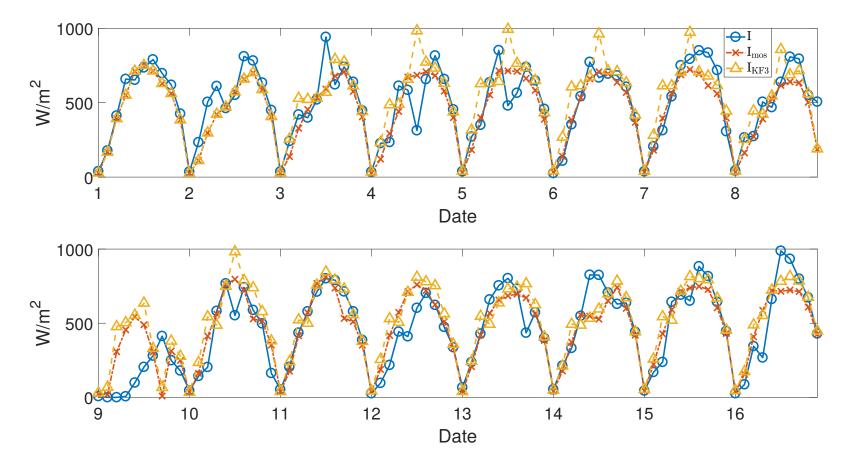
trade off between model complexity and number of available data

comparison between MOS and MOS+KF models using 3 regressors



- \bullet performances of MOS and MOS+KF are unexpectedly very close
- no improvement of daily models on hourly model

example of forecasting result using hourly model during Mar 1-16, 2018



- weather data: mostly available; some data require checking and cleaning
 - solar irradiance and solar power measurement are not always coherent
 - some samples of solar irradiance suddenly drop at noon on clear days
- WRF prediction: limited and need more time to acquire more samples since Dec 2017
- nowcasting: using cloud info as prior improves the forecasts over using weather and irradiance measurements but the improvement is not significant
- very short-term forecasting: RNN provides less forecasted errors than ANN
- short-term forecasting:
 - MOS+KF should outperform MOS when it is running over time
 - daily models should outperform hourly model as it can adapt to specific characteristic of solar irradiance at specific time
 - need more WRF forecasts to validate the comparisons among models

Acknowledgement

special Thank to

for providing technical contents in this presentation