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Importance of solar energy forecasting

Importance of solar energy forecasting

m the growth of power consumption leads to more renewable energy production
m the need of energy management in all power units

challenge: solar power highly depends on solar irradiance which varies upon weather condition
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blue line is the solar irradiance; orange line is from a clear-sky model
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What to forecast ?

J. Songsiri (Chula) 455



Importance of solar energy forecasting

Forecasted variables

u solar power

m solar irradiance

= wind power

m electrical load (in buildings, regions)

» meteoreological variables (temperature, relative humidity)
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Importance of solar energy forecasting

Problem statements

forecasting configurations:

A m

horizon of forecasts

|
. -bk\
m resolution of forecasts
m time step of forecast computing
» sliding/non-sliding

these specifications lead to
» different problem statements (easy or hard problems)

m different implementation schemes
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Importance of solar energy forecasting

Typical horizons in solar forecasting

forecasting specifications are determined from application point of view

forecasting horizon applications input
nowcasting 5-60 mins spinning reserve, demand response cloud

intra-day  1-6 hours load-following weather forecasts
short-term  1-3 days  planing, unit commitment weather forecasts

typical input variables:

» weather variables and solar irradiance (from sensors)

solar power generation (from sensors)
» weather forecasts (numerical weather prediction — NWP)

synthesized inputs (e.g. clear-sky irradiance, exponential moving avarage )
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Importance of solar energy forecasting

Example of intra-day forecasting at CUEE

problem: give forecasts at 6:00 to 17:30 with 4-hour horizon, resolution of 30 mins; forecast at
every 30 min
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Elements in solar forecasting

Elements in solar forecasting
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Elements in solar forecasting
Key elements
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involves disciplinary fields: remote sensing, electrical engineering, atmospheric science, data
analytics, system engineering, programming
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Elements in solar forecasting

sources of data: sensor, deterministic models, numerical weather prediction
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Elements in solar forecasting

Time series example

Solar irradiance Relative humidity Temperature
Time Time Time
UV index Wind speed GHI under clear sky condition
> n &
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Time Time Time
Solar zenith angle Clear sky index predicted GHI from WRF
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«
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Time Time Time
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Elements in solar forecasting

model is a relationship between inputs and outputs (typically is a mathematical mapping)
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other names
m inputs: predictors, features, explanatory variables, independent variables
m outputs: response variables, explained variables, dependent variables

J. Songsiri (Chula) 13 / 55 NIDA lecture



Elements in solar forecasting

Implementation

a well-designed ICT infrastructure is needed
» database
m processing units (tasks to be done)
data flow

m visualization

then select hardwares to serve the proposed structure

note: issues in practical implementation
» data are not perfect (missing, errors, etc.)

= data come with delay (cannot predict at the exact specified time)
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Statistical learning methods

Statistical learning methods
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Statistical learning methods

Elements in statistical learning

supervised/
unsuperised

model

based / non-
parametric
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Ensemble /
non-
ensemble

time series /
cross-section
numerical /
categorical

Data pr
proces

Transformation
to another
domain

Feature
selection/
extraction

Model
training

Model
Validation
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Statistical learning methods

Methods

categorized based on how to guide the learning process
m supervised learning
m the presence of outcome variable is used to guide the learning process
m examples are regression, support vector machine, neural network
m unsupervised learning

= we observe only the features (no measurements of outcome) and describe how the data are
clustered

m examples are k-means clustering, k-nearest-neighbor, principal components analysis
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Statistical learning methods

Procedures in Statistical Learning

m data pre-processing: missing-value imputation, removing artifacts, normalization,
preparation of data sets for experiments
m feature selection/extraction: to choose relavant input variables for the output
= model training: this is to estimate f from (X,Y’) data where Y = f(X)
m this steps involve varying complexity of models
m one obtain many candidate models in this step
= model validation: compare candidate model performance evaluated on unseen data
(validation set)
= example of methods: leave-one-out cross-validation, k-fold cross-validation, residual analysis,
white-ness test
m inference: use the selected model to further infer about the learning goal

J. Songsiri (Chula) 18 / 55 NIDA lecture



Statistical learning methods

Flow chart of training and validation process

prior knowledge

choose a class
noise of model

parametrized model
training data
true model
description estimation
no
model
selection
validation

data model

validation
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Solar forecasting techniques

Solar forecasting techniques
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Solar forecasting techniques

Typical features

response variable: I(t+ 1) or P(t 4 1) (irradiance or power at the next time step)
» features from measurement:
w I(t),I(t—1),....,I(t—="17)
w I@=1(¢ 4+ 1) (from the previous day)
w T(t),RH(t),UV(t), WS(t)
» determinisic features:

= solar zenith angle cos(0(t + 1))
m clear-sky irradiance I, (t + 1)
= exponential moving average Ioma(t + 1) (but use only past data to calculate)

methods of feature selection: correlation, partial correlation, step-wise regression
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Solar forecasting techniques

Clear-sky model

clear-sky models give irradiance under clear-sky assumption
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m static models; many have been proposed
u Ineichen model [IPC13]

I(t) =a1lp COS(Q(t))e_ai’AM(t)(fm-l-fhg(TL—l))

w clear-sky index: k(t) = I(t)/I..(t) indicates the degree of clear-sky condition
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Solar forecasting techniques

Linear regression

simplest model; typically used as a baseline

y=Po+ B X1+ BXo+ -+ [, X,

response irradiance power

predictors lagged irradiance lagged power
irradiance and lags

common predictors temperature, relative humidity

solar zenith angle, clear-sky irradiance

extensions:
» adaptive coefficients (known as model output statistic — MOS)

m predictors can be chosen by stepwise-regression
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Solar forecasting techniques

Regression trees [Jam+13]

m a regression tree consists of a series of splitting rules

O m predictor and response data are partitioned according to the
rules

Yo m the predicted response of each group is the mean of the
eargedd response values

m example of 'Hitters' data where the response is player's salary
= tree terminology:

m leaves or terminal nodes: regions Ry, Ro, ...
m internal nodes: points where predictor space is split
hits <1175 m branch: segments of trees that connect the nodes

6.00 6.74
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Solar forecasting techniques

Recursive binary splitting (top-down approach)

the goal is to find boxes Ry, Ra, ..., Ry that minimize the RSS

J
Z Z (yi — QRj)Q, Ur; is the mean response
Jj=1 iER]'

m begins at the top of the tree and successively splits the predictor space
m each split is indicated via two new brances further down

the pair of half-planes: Ri(j,s) = {X|X; < s} and Ra(j,s) = {X|X; > s}
we seek the value of j and s that minimizes

S wi-r)+ DY Wi i)

t:w; €R1(7,8) i:x;€Ra(j,s)
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J. Songsiri (Chula)

Solar forecasting techniques

26 / 55

= select X; and cutpoint s such that

splitting leads to greatest reduction in
RSS

m repeat the process but split one of
the two previously identified regions

m continues until a stopping criterion is
done (e.g. until no more regions
contains more than five observations)
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Solar forecasting techniques

Bagging

procedure: bootstrap and average

m resample to get B boostrap samples from the training set and calculate
fO @), fO @), )

= average all predictions: fbag(w) = (1/B) Ele FO ()
why bagging is useful for decision trees?

= since decision trees typically suffer from high variance, we can apply the bagging which is
averaging step to reduce the variance

m recall: given a set of n independent observations Z1, ..., Z, with o2

= variance of Z is given by 0% /n (variance reduction)
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Solar forecasting techniques

Random forest

average the decision trees built from using only subset of predictors

» building trees: random sample of m predictors as split candidates from full set of p
predictors (choose m ~ ,/p)

fV (), [P (),.... [P ()

(unlike bagging, all theese trees may not look similar to each other)
m averaging all predictions from decorrelated trees
main difference of RF from bagging

= averaging many highly correlated quantities may not lead to a large variance reduction (as
in bagging, all trees may look very similar)

m some trees in RF do not contain the same set of predictors, so all trees are decorrelated,
making average of the trees less variable and more reliable
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Solar forecasting techniques

Support vector machine [SS02]

given data sets {(z;,;)}, (feature, response)
a support vector regression problem is to solve

minimize (1/2)|w|* + C Y5 (u; + v;)
subject to y; — wlhae, —b<e+u

wlzi +b—yi < e+

ui, v; > 0

with variables w, b (hyperplane parameters) and u,v (slack variables)
» (z,y) have an approximate linear relationship

o-insensitie (o5
ﬂ‘/'f: . ' (explained by a hyperplane); determined by the
,-/r/ :, ¢ H yellow tube and parametrized by ¢
» \ / m the number of u;, v; > 0 tell us how much we
-
- e allow the pair (z;,y;) stay outside the tube
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Solar forecasting techniques
Applying SVR to solar forecasting

forecast output (vector): P(t + 1), P(t+2),..., P(t + k) where k = 8

since output of SVR is scalar, we break down to have sub-model of SVR
m example of forecasts at 6:00-9:00
= response y: P(t + k)
m features x:
I(t), P(t), PV (t + k), cos(0(t + k)), L (t + k)

(choice of features depend on the time of forecasts — more on this later)
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Solar forecasting techniques

a fully-connected networks used for explaining nonlinear relationships

Hidden

é = input layer: affine transformation (output = w’'z + b)

O 6 » hidden layers: a series of nonlinear activation function (tanh,
O sigmoid, ReLU, and more) composite with affine transformation
O O m output layer: affine transformation
Q //( m model parameters: weight and bias terms in all layers

ANN can be used for both classification and regression problems
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Solar forecasting techniques

Fitting neural networks [WBK20]; [HTF09]

some issues you need to know
m selecting the right network architecture

m use prior knowledge about the application domain

= define an appropriate input/target mapping — e.g. use ANN as a static or dynamic model in
your application ?

m capacity gained by adding new unit is typically smaller relative to capacity gained by adding
new hidden layers

m selecting the cost objective function: ¢1 or {5
m training neural network: starting values, multiple minima, overfitting, scaling of the inputs

» algorithm setting: algorithm choice, effect of algorithm parameters (batch, epoch),
stopping criterions
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Solar forecasting techniques

Applying ANN to solar forecasting

forecast output (vector): P(t + 1), P(t+2),..., P(t +8)
® inputs:

m current and past irradiance

It), I8V + 1), 1Dt +8)

) Tema ema

where I821 (t) = o@D (8) + (1 — a)I{%a2 () and a € [0.8,1)
= past solar power: P(t)
= ambient temperature: T'(t)

m model structure: 3 hidden layers, 128 neurons
m test on 10-fold cross validation

» algorithm: mini-batch Stochastic gradient (Adam optimizer), stopping criterion =
‘validation loss decreases within MAX no. of epoch’
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Solar forecasting techniques

Solar forecasting techniques in literature

the literature is huge (and keeps growing)

models can be parametrized in three categories
m physical methods: NWP (such as GFS, WRF, ECMWF)
m statistical methods: time series, regression (linear and nonlinear)

m machine learning: NN, SVR, RF, wavelet, k-mean, SOM, fuzzy
check out references:

[IPC13]; [YC14]; [Ant+16]; [Voy+17]; [Das+18]; [Yan+18]
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Model configurations

Model configurations
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Model configurations

Approaches for differentiating frameworks [Suk19]

different combinations of applying existing tools can be based on
m adaptive models
m parallel models
m cascade models
m bias correction model
denote a relationship between predictors and response as y = f(x;60)
= f can be nonlinear from any methods

m 0 is model parameter
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Model configurations

Adaptive models

model f can be trained off-line to obtain 8 but use real-time data to update 6 adaptively
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Model configurations

Parallel models: weather classification

assumption: solar power varies upon different weather conditions

Wenthov
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switch forecasting models based on a classified weather condition (each model has different

features and different parameters)
NIDA lecture
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Model configurations

Parallel models: time split

assumption: weather uncertainty varies according to different hours of the day

Kut'\ —

distribution of Irradiance in each time of forecast: EECU

Density
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sub-model responsible for each hour should be different and use different features
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Model configurations

example of random forest model for CUEE solar forecasts
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early morning and late evening data have less variation, so we use static features and only
recent values of I(t), P(t)
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Model configurations

Cascade model

assumption: one model may not capture the whole nonlinear dynamics of I
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use another nonlinear model to explain the rest
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Model configurations

Bias correction model

assumption: use the second model to learn dynamics from the residual error of the first model
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Illustrated results

[[lustrated results
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Illustrated results

Setting

source: CUEE solar rooftop (capacity of 8kW)

EECU: 2017-01-16

- s w I(t),P(t),T(t) are downsampled to 30-min
L 3 sampling
= = give forecasts of 6:00,6:30,7:00,...,17:30

06:00 08:00 10:00 12:00 14:00 16:00 18:00

e = models (RF,SVR,MARS,ANN) trained and
tested using k-fold cross validation

» test the performance with normalized RMSE,
o MBE (by installed capacity)

Normalize Solar Power(%)

6 20 40 60 8 100
Normalized Solar Irradiance(%)
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Illustrated results

Forecast results: time plot example

results contain good and bad performances

EECU: 2017-12-11 EECU: 2018-01-30 EECU: 2018-02-28
801 ~ measured 801 ~ measured 801 ~ measured
2 I X R X — RF
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time time time

results shown are from one-step forecasts
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Illustrated results

Forecast results: each time of the day

performance indices split by time of the day

EECU: Direct solar power forecast EECU: Direct solar power forecast
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typical solar forecasting results
m less error in the early morning and late evening
m more variation of data during mid-day; lead to higher error
m in this experiment, RF gives the best performance
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Illustrated results

Forecast results: k-step
performance indices split by k-step predicted

EECU: Direct solar power forecast EECU: Direct solar power forecast

- RF
- ANN
= SVR
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- MAR
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— ANN —

mm SVR o :
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o B0 -1.00
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-0.50
prediction horizon(min) prediction horizon(min)

NMBE of solar power(%

NRMSE of solar power(%)
N

typical solar forecasting results
u higher error if we look further step ahead
m in this experiment, RF gives the best performance in both RMSE and MBE
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Trends and open problems

Trends and open problems
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Trends and open problems

Trends: ensemble forecasting

use different sources of input; trained many models and ensemble
&

ssttel e :)M
m\

\ come. |5

unit
huUll—] tgﬂzu_mh'.\(
l rollal
Modtd N , hare leavres
él'\ﬂl;l‘ﬂ J&M: V'&w)

lndthwt learnavy

m in NWP, perturb initial conditions to get different forecasts and ensemble the results
m ensemble techniques from statistical learning: boosting, bagging, etc.

J. Songsiri (Chula) 47 / 55 NIDA lecture



Trends and open problems

Trends: probablilistic forecasting [GPG16]; [Kho+11]; [DPP16]

give more statistical properties of the forecasts
m use probablilistic models in the training process
m use deterministic models but analyze statistical properties of forecast errors

distributio

probabilty densiy unction
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Trends and open problems

Prediction interval

1-step forecasts on the dates having 10 lowest 1-step RMSE
T T

prediction interval
actual

solar power (p.u.)

05 L I I I I
11-Oct-2019 16-Jun-2019 May- N M: May- 14-Jun-2019 15-Sep-2019

time

1-step forecasts on the dates having 10 largest 1-step RMSE
T T T T

prediction interval
actual
5 forecast

solar power (p.u.)

13-Jan-2019  20-Feb-2019  30-Jan-2019  21-Feb2019  22-Feb-2019  20-Jan-2019  13-Feb-2019  10-Feb-2020  28-Feb-2019  24-Jan-2019
time

prediction interval of forecasts can be useful for operators
m the lower bound tells us to reserve some other source of generation to supply the load
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Conclusion

Conclusion

m solar forecasting is an applied problem and requires knowledge from many disciplinary
fields

m existing tools in statistical learning (regression, ML) have been applied extensively in
literature; only twists in model configuration and how the data are pre-processed

m good forecasting results come from relevant inputs that explain fluctuated weather
conditions, so an investment of good source of data or equipment is unavoidable (not
presented here, e.g, satellite data, sky imagers, forecasts of NWP)
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Website

Websites

= Smart grid research unit
http://www.sgru.eng.chula.ac.th/

m Jitkomut page
http://jitkomut.eng.chula.ac.th/

m CUEE page
http://www.ee.eng.chula.ac.th/th/
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