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Sparse identification

parameter estimation problems with sparsity-promoting regularization

minimize f(x) subject to ‖x‖1 ≤ ρ

• f is a loss function (norm squared error, loglikelihood, etc.)

• ρ is a given positive parameter

• the optimization variable is x ∈ R
n

Motivations

• ℓ1-norm constraint encourages sparsity in x for a sufficiently small ρ

• many zeros in x correspond to a model with less number of parameters

• parsimonious models require fewer observations

used in bioinformatics, digital communication, pattern recognition, ...
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Example: Lasso problem (Tibshirani 1996)

minimize ‖Ax− b‖22
subject to ‖x‖1 ≤ ρ

with variable x ∈ Rn

• a heuristic for regression selection to find a sparse solution

• find many applications on signal processing, image reconstruction, and
compressed sensing, ...
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Sparse Autoregressive (AR) Models

a multivariate autoregressive process of order p

y(t) =

p
∑

k=1

Aky(t− k) + ν(t)

y(t) ∈ R
n, Ak ∈ R

n×n, k = 1, 2, . . . , p, ν(t) is noise

Problem: find Ak’s that minimize the mean-squared error and

• Ak’s contain many zeros

• common zero locations in A1, A2, . . . , Ap

A1 A2
· · ·

Ap
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Statistical interpretation (Granger 1969)

sparsity in coefficients Ak

(Ak)ij = 0, for k = 1, 2, . . . , p

is the characterization of Granger causality of AR models

• yi is not Granger-caused by yj

• knowing yj does not help to improve the prediction of yi

applications in neuroscience and
system biology

(Salvador et al. 2005, Valdes-Sosa
et al. 2005, Fujita et al. 2007, ...)
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Sum of ℓ2-norm

suppose ck is a vector in Rn, the constraint

‖c1‖+ ‖c2‖+ · · ·+ ‖cm‖ ≤ ρ

makes some ck’s zero vectors (for a sufficiently small ρ)

idea: to make a common sparsity in Ak’s

projection

A2

(A1)ij (A2)ij · · · (Ap)ijbij = [ ]

· · ·

∑

i 6=j

‖bij‖ ≤ ρ

ApA1 B = {‖bij‖}

‖bij‖ = 0 ⇐⇒ (A1)ij = (A2)ij = · · · = (Ap)ij = 0
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Estimation problem

given the measurements y(1), y(2), . . . , y(N)

minimize
N
∑

t=p+1
‖y(t)−

∑p

k=1Aky(t− k)‖2

subject to
∑

i 6=j

∥

∥

∥

∥

[

(A1)ij (A2)ij · · · (Ap)ij

]
∥

∥

∥

∥

2

≤ ρ

with variables Ak ∈ R
n×n for k = 1, 2, . . . , p

• summation over (i, j) plays a role of ℓ1-type norm

• using the ℓ2 norm of p-tuple of (Ak)ij yields a group sparsity

a heuristic convex approach to obtain sparse AR coefficients
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Example: n = 20, p = 3

common zero patterns of a solution Ak, k = 1, 2, . . . , p

ρ = 15 ρ = 10 ρ = 5

ρ = 2 ρ = 0.5 ρ = 0.05

as ρ decreases, Ak’s contain more zeros
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Numerical solutions

The estimation problem can be expressed by

minimize f(x)
subject to x ∈ C

with variable x ∈ Rn and C is a convex set (here ℓ1 ball)

problem: how to solve this optimization problem in large scale ?

idea: use a projected gradient method which is based on the update

x(k+1) = PC(x
(k) − t(k)∇f(x(k)))

• t(k) is a step size, and ∇f is the gradient of f

• PC is a Euclidean projection onto C, defined by

PC(y) = argminx‖x− y‖ subject to x ∈ C.
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Euclidean projections

the Euclidean projection of a vector a ∈ R
n onto the unit ℓp-norm ball

minimize ‖y − a‖22
subject to ‖y‖p ≤ 1

x1

x2

x1

x2

x1

x2

ℓ1-norm ball ℓ2-norm ball ℓ∞-norm ball
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y
a

y

a

y

a

projection onto ℓ2 ball

y =
a

‖a‖2

projection onto ℓ∞ ball

yk =

{

ak, |ak| ≤ 1

sign(ak), |ak| ≥ 1

projection onto ℓ1 ball

no closed-form solution
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Projection onto the ℓ1-norm ball

Primal problem
minimize ‖y − a‖22
subject to ‖y‖1 ≤ 1

with variable y ∈ Rn

Dual problem

maximize g(λ) :=
∑

k

gk(λ)− 2λ

subject to λ ≥ 0,

where gk is given by

gk(λ) =

{

−(λ− |ak|)
2 + a2k, λ < |ak|

a2k, λ ≥ |ak|
, k = 1, 2, . . . , n

with variable λ ∈ R
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g′k is a piecewise linear function in λ

g′k(λ) =

{

2(|ak| − λ), λ < |ak|

0, λ ≥ |ak|.

if ‖a‖1 > 1, then the dual optimal point λ∗ is given by the root of

g′(λ) =
n
∑

k=1

max(|ak| − λ, 0)− 1 = 0

a9

2‖a‖1 − 2

−2

0

λ
|a1||a2|

. . .
|an|

g
′ (
λ
) sort |ak| such that

|a1| ≤ |a2| ≤ . . . ≤ |an|
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Algorithm

1. If ‖a‖1 ≤ 1, then λ∗ = 0.

2. Otherwise, define a0 = 0 and sort |ak| in ascending order. Compute

λ g′(λ)/2
|a0| = 0 ‖a‖1 − 1
|a1| (1− n)|a1|+

∑n

k=2 |ak| − 1
|a2| (2− n)|a2|+

∑n

k=3 |ak| − 1
... ...
|an−1| −|an−1|+ |an| − 1
|an| −1

3. Locate the interval where g′(λ) changes its sign, i.e., find k such that

g′(|ak|) ≥ 0 and g′(|ak+1|) ≤ 0
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4. the point where g′(λ) = 0 is

λ∗ =

(

∑n

j=k+1 |aj|
)

− 1

(n− k)

5. Using λ∗ to compute the projection y∗ from

y∗k =











ak + λ∗, ak ≤ −λ∗

0, |ak| < λ∗

ak − λ∗, ak ≥ λ∗,

• the relation between y∗ and λ∗ is derived via duality

• it shows the location of zeros in y

14



Outline

• Sparse identification

• Projection onto an ℓ1-norm ball

• Numerical examples



Numerical examples

projection problem with n ranges from 800 to 80000
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Dual problem
CVX (SDPT3)

n

• blue line - solve the dual problem by the proposed algorithm

• red line - solve the primal problem by an interior-point method
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Projection of AR coefficients
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Dual problem
CVX (SDPT3)

n

blue line - proposed algorithm

red line - IP method

• n ranges from 40 to 200 and p = 3 (n2p ranges from 4800 to 120000)

• using ρ = 5, compute a projection of A1, A2, A3 onto the set

∑

i 6=j

‖
[

(A1)ij (A2)ij · · · (Ap)ij
]

‖2 ≤ ρ
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Sparse AR estimation

generate 500 time points from a sparse AR process with n = 50 and p = 3

True sparsity Least−squares Sparse AR

• a few data and presence of noise make LS solution a bad estimate

• when a sparse solution is favor, adding ℓ1-type contraints is an efficient
convex approach to serve this purpose

17



Summary

• sparse identification is useful for learning structures in complex systems

• a heuristic approach to yield a sparse solution is to add ℓ1-type
constraints

• solving large-scale sparse optimization problems requires cheap
computation of a projection onto ℓ1-norm ball

• an efficient method to compute projections is derived via the dual
problem
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