Projection onto an ℓ_1 -norm Ball with Application to Identification of SparseAutoregressive Models

Jitkomut Songsiri

Department of Electrical Engineering Chulalongkorn University

Asean Symposium on Automatic Control Mar 8-9, ²⁰¹¹

- Sparse identification
- Projection onto an ℓ_1 -norm ball
- Numerical examples

parameter estimation problems with sparsity-promoting regularization

```
minimize f(x) subject to ||x||_1 \leq \rho
```
- \bullet f is a loss function (norm squared error, loglikelihood, etc.)
- \bullet ρ is a given positive parameter
- $\bullet\,$ the optimization variable is $x\in{\bf R}^n$

Motivations

- \bullet ℓ_1 -norm constraint encourages sparsity in x for a sufficiently small ρ
- $\bullet\,$ many zeros in x correspond to a model with less number of parameters
- parsimonious models require fewer observations

used in bioinformatics, digital communication, pattern recognition, ...

$$
\begin{array}{ll}\text{minimize} & \|Ax - b\|_2^2\\ \text{subject to} & \|x\|_1 \le \rho \end{array}
$$

with variable $x \in \mathbf{R}^n$

- ^a heuristic for regression selection to find ^a sparse solutio n
- find many applications on signal processing, image reconstruction, andcompressed sensing, ...

a multivariate autoregressive process of order p

$$
y(t) = \sum_{k=1}^{p} A_k y(t - k) + \nu(t)
$$

 $y(t)\in\mathbf{R}^n$, $A_k\in\mathbf{R}^n$ $\times n$, $k=1,2,\ldots,p$, $\nu(t)$ is noise

Problem: find A_k 's that minimize the mean-squared error and

- \bullet $\left. A_{k}\right. ^{\prime}$ s contain many zeros
- $\bullet\,$ common zero locations in A_1, A_2, \ldots, A_p

sparsity in coefficients A_k

$$
(A_k)_{ij} = 0, \quad \text{for } k = 1, 2, \dots, p
$$

is the characterization of Granger causality of AR models

- $\bullet\,$ y_i is not *Granger-caused* by y_j
- $\bullet\,$ knowing y_j does not help to improve the prediction of y_i

applications in neuroscience andsystem biology

(Salvador et al. 2005, Valdes-Sosa et al. 2005, Fujita et al. 2007, ...)

suppose c_k is a vector in ${\bold R}^n$, the constraint

```
||c_1|| + ||c_2|| + \cdots + ||c_m|| \leq \rho
```
makes some c_k 's *zero* vectors (for a sufficiently small ρ)

 ${\sf idea}\colon$ to make a common sparsity in A_k 's

 $||b_{ij}|| = 0 \iff (A_1)_{ij} = (A_2)_{ij} = \cdots = (A_p)_{ij} = 0$

Estimation problem

given the measurements $y(1), y(2), \ldots, y(N)$

minimize
$$
\sum_{t=p+1}^{N} ||y(t) - \sum_{k=1}^{p} A_k y(t-k)||^2
$$

subject to
$$
\sum_{i \neq j} ||[(A_1)_{ij} \quad (A_2)_{ij} \quad \cdots \quad (A_p)_{ij}]\||_2 \leq \rho
$$

with variables $A_k \in \mathbf{R}^{n \times n}$ for $k = 1, 2, \ldots, p$

- $\bullet\,$ summation over (i,j) plays a role of $\ell_1\text{-type}$ norm
- $\bullet\,$ using the ℓ_2 norm of $p\text{-tuple}$ of $(A_k)_{ij}$ yields a group sparsity

^a heuristic convex approach to obtain sparse AR coefficients

Example: $n = 20$, $p = 3$

common zero patterns of a solution $A_k, \ k=1,2,\ldots,p$

as ρ decreases, A_k 's contain more zeros

The estimation problem can be expressed by

minimize $f(x)$ subject to $x \in \mathcal{C}$

with variable $x \in \mathbf{R}^n$ and $\mathcal C$ is a convex set (here ℓ_1 ball)

problem: how to solve this optimization problem in large scale ?

 ${\sf idea}\colon$ use a projected gradient method which is based on the update

$$
x^{(k+1)} = \mathcal{P}_{\mathcal{C}}(x^{(k)} - t^{(k)} \nabla f(x^{(k)}))
$$

- • \bullet $t^{(k)}$ is a step size, and ∇f is the gradient of f
- \bullet $\mathcal{P}_{\mathcal{C}}$ is a Euclidean projection onto $\mathcal{C}% _{\mathcal{C}}$, defined by

 $P_{\mathcal{C}}(y) = \mathsf{argmin}_x ||x - y||$ subject to $x \in \mathcal{C}$.

- Sparse identification
- Projection onto an ℓ_1 -norm ball
- Numerical examples

the Euclidean projection of a vector $a \in {\bf R}^n$ onto the unit ℓ_p -norm ball

projection onto ℓ_2 ball

$$
y = \frac{a}{\|a\|_2}
$$

projection onto ℓ_∞ ball

$$
y_k = \begin{cases} a_k, & |a_k| \le 1\\ \text{sign}(a_k), & |a_k| \ge 1 \end{cases}
$$

projection onto ℓ_1 ball

no closed-form solution

Primal problem

with variable $y \in \mathbf{R}^n$

Dual problem

maximize
$$
g(\lambda) := \sum_{k} g_k(\lambda) - 2\lambda
$$

subject to $\lambda \ge 0$,

where g_k is given by

$$
g_k(\lambda) = \begin{cases} -(\lambda - |a_k|)^2 + a_k^2, & \lambda < |a_k| \\ a_k^2, & \lambda \ge |a_k| \end{cases}, \quad k = 1, 2, \dots, n
$$

with variable $\lambda \in \mathbf{R}$

 g'_k is a piecewise linear function in λ

$$
g'_k(\lambda) = \begin{cases} 2(|a_k| - \lambda), & \lambda < |a_k| \\ 0, & \lambda \ge |a_k|. \end{cases}
$$

if $\|a\|_1 > 1$, then the dual optimal point λ^* is given by the root of

- 1. If $||a||_1 \leq 1$, then $\lambda^* = 0$.
- 2. Otherwise, define $a_0=0$ and sort $\vert a_k\vert$ in ascending order. Compute

$$
\begin{array}{ll}\n\lambda & g'(\lambda)/2 \\
\hline |a_0| = 0 & ||a||_1 - 1 \\
|a_1| & (1 - n)|a_1| + \sum_{k=2}^n |a_k| - 1 \\
|a_2| & (2 - n)|a_2| + \sum_{k=3}^n |a_k| - 1 \\
\vdots & \vdots & \\
|a_{n-1}| & -|a_{n-1}| + |a_n| - 1 \\
|a_n| & -1 & -1\n\end{array}
$$

3. Locate the interval where $g'(\lambda)$ changes its sign, *i.e.,* find k such that

$$
g'(|a_k|) \ge 0 \quad \text{and} \quad g'(|a_{k+1}|) \le 0
$$

4. the point where $g'(\lambda) = 0$ is

$$
\lambda^* = \frac{\left(\sum_{j=k+1}^n |a_j|\right) - 1}{(n-k)}
$$

5. Using λ^* to compute the projection y^* from

$$
y_k^* = \begin{cases} a_k + \lambda^*, & a_k \le -\lambda^* \\ 0, & |a_k| < \lambda^* \\ a_k - \lambda^*, & a_k \ge \lambda^*, \end{cases}
$$

- $\bullet\,$ the relation between y^* and λ^* is derived via duality
- $\bullet\,$ it shows the location of zeros in y
- Sparse identification
- Projection onto an ℓ_1 -norm ball
- Numerical examples

projection problem with n ranges from 800 to 80000

- \bullet blue line solve the dual problem by the proposed algorithm
- red line solve the primal problem by an interior-point method

Projection of AR coefficients

blue line - proposed algorithmred line - IP method

 $\bullet\,$ n ranges from 40 to 200 and $p=3$ $(n^2$ 2p ranges from 4800 to $120000)$

 $\bullet\,$ using $\rho=5$, compute a projection of A_1,A_2,A_3 onto the set

$$
\sum_{i \neq j} \|\left[(A_1)_{ij} \quad (A_2)_{ij} \quad \cdots \quad (A_p)_{ij} \right] \|_2 \leq \rho
$$

Sparse AR estimation

generate 500 time points from a sparse AR process with $n=50$ and $p=3$

- ^a few data and presence of noise make LS solution ^a bad estimate
- $\bullet\,$ when a sparse solution is favor, adding ℓ_1 -type contraints is an efficient convex approach to serve this purpose

Summary

- sparse identification is useful for learning structures in complex systems
- $\bullet\,$ a heuristic approach to yield a sparse solution is to add $\ell_1\text{-type}$ constraints
- solving large-scale sparse optimization problems requires cheapcomputation of a projection onto ℓ_1 -norm ball
- an efficient method to compute projections is derived via the dual problem

(Selected) References

- R. Tibshirani, "Regression shrinkage and selection via the Lasso," *Journal of the Royal Statistical Society. Series ^B (Methodological)*, vol. 58, no. 1, pp. 267–288, ¹⁹⁹⁶
- M. Yuan and Y. Lin, "Model selection and estimation in regression withgrouped variables," *Journal of the Royal Statistical Society: Series ^BStatistical Methodology*, vol. 68, no. 1, pp. 49–67, ²⁰⁰⁶
- A. Fujita, P. Severino, J. Sato, and S. Miyano, "Granger causality in systems biology: modeling gene networks in time series microarray data using vector autoregressive models," *Advances in Bioinformatics andComputational Biology*, pp. 13–24, ²⁰¹⁰
- M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, "Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems," *IEEE Journal of Selected Topics in Signal Processing*, vol. 1, no. 4, pp. 586–597, ²⁰⁰⁷