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Sparse identification

parameter estimation problems with sparsity-promoting regularization
minimize f(x) subject to ||z|1 < p

e f is a loss function (norm squared error, loglikelihood, etc.)
® p IS a given positive parameter

e the optimization variable is x € R"

Motivations

e /1-norm constraint encourages sparsity in x for a sufficiently small p
e many zeros in x correspond to a model with less number of parameters

e parsimonious models require fewer observations

used in bioinformatics, digital communication, pattern recognition, ...



Example: Lasso problem (Tibshirani 1996)

minimize  ||Az — b||3
subject to  ||x][1 < p

with variable z € R"

e a heuristic for regression selection to find a sparse solution

e find many applications on signal processing, image reconstruction, and
compressed sensing, ...
Jz]ls < p =zl <

frequency
frequency

m ol ll L_IJ_I_L_A_I—A;
values of xy, values of x;




Sparse Autoregressive (AR) Models

a multivariate autoregressive process of order p

y(t) =D Awy(t — k) + v(t)
k=1

y(t) e R", A, e R"*"™, k=1,2,...,p, v(t) is noise

Problem: find A;'s that minimize the mean-squared error and

e A.'s contain many zeros

e common zero locations in A;, As,..., A,




Statistical interpretation (Granger 1969)

sparsity in coefficients Ay
(Ak)ij:(), fork:1,2,...,p
is the characterization of Granger causality of AR models

e y,; is not Granger-caused by y;

e knowing y; does not help to improve the prediction of y;

Y

O \’ _}%Q applications in neuroscience and
/ Q/\‘. / system biology
O ) Q\Q (Salvador et al. 2005, Valdes-Sosa

‘%@ ’/QQ/‘QQ et al. 2005, Fujita et al. 2007, ...)




Sum of /5-norm

suppose ¢ is a vector in R", the constraint
lexll + flezll + -+ lleml] < p

makes some c¢;'s zero vectors (for a sufficiently small p)

idea: to make a common sparsity in Ag's

bij =1 (A)i  (Az)i (Ap)ij | ; 1bi5]] < p

projection
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Estimation problem

given the measurements y(1),y(2),...,y(N)

N
minimize S fly(t) = > Ary(t — k)|I?
t=p+1
subject to ; [(Al)z‘j (A2)ij - (Ap)v:j] sp
7] 2

with variables A, € R™"*" for k =1,2,....p

e summation over (i, j) plays a role of £;-type norm

e using the /2 norm of p-tuple of (Ay);; yields a group sparsity

a heuristic convex approach to obtain sparse AR coefficients



Example: n =20, p=3

common zero patterns of a solution A;, k=1,2,...,p

p=0.05

as p decreases, A;'s contain more zeros



Numerical solutions

The estimation problem can be expressed by

minimize  f(x)
subjectto z €C

with variable x € R™ and C is a convex set (here ¢; ball)
problem: how to solve this optimization problem in large scale ?

idea: use a projected gradient method which is based on the update
e F D = Po () — ¢RI £ ()

o t(F) is a step size, and V f is the gradient of f

e Pc is a Euclidean projection onto C, defined by

Pe(y) = argmin_||x — y|| subject to = € C.
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Euclidean projections

the Euclidean projection of a vector a € R"™ onto the unit £,-norm ball

minimize ||y — al|3
subject to  ||y||, <1

X9 X2 L2

¢1-norm ball ¢5>-norm ball ¢ ~.-norm ball



projection onto /5 ball

~ lall2

projection onto /., ball

g, lax| <1
Yk = .
sign(ag), |ax| >1

projection onto /; ball

no closed-form solution
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Projection onto the /;-norm ball

Primal problem
minimize ||y — al|3
subject to  ||y|l1 <1

with variable y € R"

Dual problem

maximize g(\) := > gr(A\) — 2\
k
subject to A >0,

where g Is given by

—(\ = |ag)? + a2, A
gr(A) = { A= lael)™ +ap, A <lax k=1,2,...

az, A > ag|’

with variable A € R
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gy, is a piecewise linear function in A

2(\ak|—)\), A\ < |a,k\
(A) =
07 A > |a’k‘

if ||a||x > 1, then the dual optimal point A* is given by the root of

g'(\) => max(lap| — A,0) =1 =0
k=1

2[lallx =2

; o

sort |ag| such that

jar] < lag| < ... < ay|

=)
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Algorithm

1. If ||la|ls <1, then \* = 0.

2. Otherwise, define ag = 0 and sort |ag| in ascending order. Compute

A g'(A)/2

agl =0 |lafl; —1

a | (1 =n)|ar| + 3 p_s|ar| — 1
as| (2 —n)laz| + 3 55 lax] — 1
an—1| _‘an—l + |an| —1

A | —1

3. Locate the interval where ¢’(\) changes its sign, i.e., find k such that

g (Jag]) >0 and ¢'(lag+1]) <0
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4. the point where ¢’'(A\) =0 is

(5 lagl) =1

R oy

5. Using \* to compute the projection y* from

(ak—l—)\*, ar < —A\*
yz — < Oa |ak‘ < A*
\ak—)\*, aj Z )\*,

e the relation between y* and \* is derived via duality

e it shows the location of zeros in y
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Numerical examples

projection problem with n ranges from 800 to 80000
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e blue line - solve the dual problem by the proposed algorithm

e red line - solve the primal problem by an interior-point method
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Projection of AR coefficients

3
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blue line - proposed algorithm

red line - IP method

e n ranges from 40 to 200 and p = 3 (n?p ranges from 4800 to 120000)

e using p = 5, compute a projection of A, Ay, A3 onto the set

> (A (A2

17

(Ap)ij| ll2 < p
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Sparse AR estimation

generate 500 time points from a sparse AR process with n = 50 and p = 3

True sparsity Least—squares Sparse AR

e a few data and presence of noise make LS solution a bad estimate

e when a sparse solution is favor, adding /;-type contraints is an efficient
convex approach to serve this purpose
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Summary

e sparse identification is useful for learning structures in complex systems

e a heuristic approach to yield a sparse solution is to add /;-type
constraints

e solving large-scale sparse optimization problems requires cheap
computation of a projection onto #1-norm ball

e an efficient method to compute projections is derived via the dual
problem
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