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Granger causality (Granger 1969)

sparsity in coefficients Ay,
(Ak)i; =0, fork=1,2,...,p
is the characterization of Granger causality in AR model:
y(t) = Ayt — 1) + Aogy(t — 2) + - + Apy(t — p) + (1)

e y,; is not Granger-caused by y;

e knowing y; does not help to improve the prediction of y;

/ g
(Salvador et al. 2005, Valdes-

Q
/ Q\Q O/.Q Sosa et al. 2005, Fujita et al.
. 2007, ...)

Q applications in neuroscience and
system biology




Learning Granger Graphical Models (J. Songsiri 2013)

Problem: find A.’s that minimize the mean-squared error and

e A.'s contain many zeros

e common zero locations in A, As,..., A,

Formulation: least-squares with sum-of-£5-norm regularization

min (1/2)||Y—AHH§+>\§H (A1)is (A2)i; - (Ap)ij] Il

the problem falls into the framework of Group Lasso
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Application on classifying brain conditions

Brain under condition A Brain under condition B

e brain under two conditions may share some similar connectivity patterns due
to some normal functioning of the brain

e different conditions of the brain may lead to some different edges in the brain
connectivity



Granger causality of multiple AR models

causality pattern
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e common sparsity of Ax's in each model defines its Granger causality structure

e our goal is to learn similar Granger causality structures among all models



Formulation for learning multiple graphical models

jointly estimate K AR models to have similar Granger-causality structures

.....

K K
1
minimize Y —[|Y®—AWHY 340 37> jHB§f>
i#j k=1

K—1

A HB.(’?“) _ B.(’?)H

e ‘2+ 222 || B i |,
k=1 1#7 k=1

o the superscript (¥) denotes the kth model

o BY = [(aP)y (), o (al),] eR

e 1st term: least-squares error of K models

e 2nd term: promote a sparsity in each model

e 3rd term: promote similarity in any two consecutive models

e a least-squares problem with sum-of-£5-norm regularization



Group Fused Lasso framework

the estimation problem can be regarded as a Group Fused Lasso problem

minimize (1/2)||Gx — b||3 + \1||Px

21+ A2||Dxll2.1
with variable z € R"

e GER™ ™" be R",PecR*”™ DecR"™" are problem parameters
_ L
e sum of 2-norm: ||z||21 = D> 1 _1 ||2kl2
e D is a kronecker product of a projection and the forward difference matrix
o if Aoy =0 and A\; > 0, it reduces to a group lasso problem

o if \y >0 and Ay =0, it is a class of total variation regularized problem
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Splitting technique

by splitting the cost objective into three terms

minixmize (1/2)|Gx — bl|3 + A1||Pz|2.1 + A2||Dz||2.1

and define the following functions

fz) = (1/2)[|Gz = bll3,  g(z) = Mlzll2,1,  h(z) = Aaflz[l2

arranged into ADMM (Alternating Direction Multiplier Method) format as

with variables x; € R", 25 € R® and 23 € R"

see the detail of the algorithm in Parikh and Boyd 2014, Proximal algorithms



Computational cost in ADMM

the iteration update in ADMM involves

e basic matrix algebraic operations: addition, multiplication

e solving linear equations with positive definite matrix (using Cholesky)

e computing the proximal operator of f(x) = ||z||21 = Zézl |kl 2

i
prox_ .(x))r = max <41 — ,O}x :
(proe () = ms {1~ 10

fork=1,2,...,L known as block solft thresholding operator

the algorithm applied in this problem is computationally cheap
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Numerical examples

generate 3 sparse AR models having similar Granger structures
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Jointly estimate 3 models
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e model errors are increasing as the estimated Granger network is too dense

e Group Fused Lasso yields a lower model error as Ay increases



ROC curves of Group Lasso VS Group Fused Lasso

TPR
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e at a fixed FPR (false positive rate), Group Fused Lasso yields a higher TPR
(true positive rate) than Group Lasso

e obtain more accurate Granger structure as Ay increases
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Performance of ADMM algorithm

solved the problem with 30, 000 variables by ADMM in 300-400 seconds
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o Left: relative error of the primal objective

e Right: relative error of the solution
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Summary

e we have proposed a Group Fused Lasso formulation for estimating jointly
multiple sparse AR models

e the formulation uses a sum of 2-norm penalty on the differences between
consecutive AR models

e it finds applications in exploring a common structure of time series belonging
to different classes

e ADMM algorithm as an proximal method is shown to be efficient to solve the
problem in large scale
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