Learning Multiple Granger Graphical Models via Group Fused Lasso

Jitkomut Songsiri

Department of Electrical Engineering Chulalongkorn University

Asian Control Conference (ASCC), May 31- June 3, 2015 Kota Kinabalu, Malaysia

- Granger graphical models
- Learning multiple Granger graphical models
- Algorithm
- Numerical examples

sparsity in coefficients A_k

$$(A_k)_{ij} = 0, \text{ for } k = 1, 2, \dots, p$$

is the characterization of **Granger causality** in AR model:

$$y(t) = A_1 y(t-1) + A_2 y(t-2) + \dots + A_p y(t-p) + \nu(t)$$

- y_i is not *Granger-caused* by y_j
- knowing y_j does not help to improve the prediction of y_i

applications in neuroscience and system biology

(Salvador et al. 2005, Valdes-Sosa et al. 2005, Fujita et al. 2007, ...) **Problem:** find A_k 's that minimize the mean-squared error and

- A_k 's contain many zeros
- common zero locations in A_1, A_2, \ldots, A_p

Formulation: least-squares with sum-of- ℓ_2 -norm regularization

$$\min_{A} (1/2) \|Y - AH\|_{2}^{2} + \lambda \sum_{i \neq j} \| [(A_{1})_{ij} \quad (A_{2})_{ij} \quad \cdots \quad (A_{p})_{ij}] \|_{2}$$

the problem falls into the framework of Group Lasso

- Granger graphical models
- Learning multiple Granger graphical models
- Algorithm
- Numerical examples

Application on classifying brain conditions

- brain under two conditions may share some **similar** connectivity patterns due to some normal functioning of the brain
- different conditions of the brain may lead to some **different** edges in the brain connectivity

- common sparsity of A_k 's in each model defines its Granger causality structure
- our goal is to learn similar Granger causality structures among all models

Formulation for learning multiple graphical models

jointly estimate K AR models to have *similar* Granger-causality structures

$$\underset{A^{(1)},...,A^{(K)}}{\text{minimize}} \ \sum_{k=1}^{K} \frac{1}{2} \| Y^{(k)} - A^{(k)} H^{(k)} \|_{2}^{2} + \lambda_{1} \sum_{i \neq j} \sum_{k=1}^{K} \left\| B_{ij}^{(k)} \right\|_{2} + \lambda_{2} \sum_{i \neq j} \sum_{k=1}^{K-1} \left\| B_{ij}^{(k+1)} - B_{ij}^{(k)} \right\|_{2}$$

• the superscript $^{(k)}$ denotes the kth model

•
$$B_{ij}^{(k)} = \begin{bmatrix} (A_1^{(k)})_{ij} & (A_2^{(k)})_{ij} & \cdots & (A_p^{(k)})_{ij} \end{bmatrix}^T \in \mathbf{R}^p$$

- 1st term: least-squares error of K models
- 2nd term: promote a sparsity in each model
- 3rd term: promote similarity in any two consecutive models
- a least-squares problem with sum-of- ℓ_2 -norm regularization

the estimation problem can be regarded as a Group Fused Lasso problem

$$\underset{x}{\text{minimize}} \quad (1/2) \|Gx - b\|_2^2 + \lambda_1 \|\mathcal{P}x\|_{2,1} + \lambda_2 \|\mathcal{D}x\|_{2,1}$$

with variable $x \in \mathbf{R}^n$

- $G \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m, \mathcal{P} \in \mathbf{R}^{s \times n}, \mathcal{D} \in \mathbf{R}^{r \times n}$ are problem parameters
- sum of 2-norm: $||z||_{2,1} = \sum_{k=1}^{L} ||z_k||_2$
- \mathcal{D} is a kronecker product of a projection and the forward difference matrix
- if $\lambda_2 = 0$ and $\lambda_1 > 0$, it reduces to a **group lasso** problem
- if $\lambda_2 > 0$ and $\lambda_1 = 0$, it is a class of **total variation regularized** problem

- Granger graphical models
- Learning multiple Granger graphical models
- Algorithm
- Numerical examples

Splitting technique

by splitting the cost objective into three terms

minimize
$$(1/2) \|Gx - b\|_2^2 + \lambda_1 \|\mathcal{P}x\|_{2,1} + \lambda_2 \|\mathcal{D}x\|_{2,1}$$

and define the following functions

$$f(x) = (1/2) \|Gx - b\|_2^2, \quad g(x) = \lambda_1 \|x\|_{2,1}, \quad h(x) = \lambda_2 \|x\|_{2,1}$$

arranged into ADMM (Alternating Direction Multiplier Method) format as

minimize
$$f(x_1) + g(x_2) + h(x_3)$$

subject to $\begin{bmatrix} \mathcal{P} \\ \mathcal{D} \end{bmatrix} x_1 = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix}$

with variables $x_1 \in \mathbf{R}^n, x_2 \in \mathbf{R}^s$ and $x_3 \in \mathbf{R}^r$

see the detail of the algorithm in Parikh and Boyd 2014, Proximal algorithms

the iteration update in ADMM involves

- basic matrix algebraic operations: addition, multiplication
- solving linear equations with positive definite matrix (using Cholesky)
- computing the proximal operator of $f(x) = ||x||_{2,1} = \sum_{k=1}^{L} ||x_k||_2$

$$(\mathbf{prox}_{\gamma f}(x))_k = \max\left\{1 - \frac{\gamma}{\|x_k\|_2}, 0\right\} x_k,$$

for $k = 1, 2, \dots, L$ known as **block solft thresholding operator**

the algorithm applied in this problem is computationally cheap

- Granger graphical models
- Learning multiple Granger graphical models
- Algorithm
- Numerical examples

Numerical examples

generate 3 sparse AR models having similar Granger structures

Group Lasso:

seperately estimate 3 models

Group Fused Lasso:

jointly estimate 3 models

- model errors are increasing as the estimated Granger network is too dense
- Group Fused Lasso yields a lower model error as λ_2 increases

ROC curves of Group Lasso VS Group Fused Lasso

- at a fixed FPR (false positive rate), Group Fused Lasso yields a higher TPR (true positive rate) than Group Lasso
- obtain more accurate Granger structure as λ_2 increases

Performance of ADMM algorithm

solved the problem with 30,000 variables by ADMM in 300-400 seconds

- Left: relative error of the primal objective
- **Right:** relative error of the solution

Summary

- we have proposed a Group Fused Lasso formulation for estimating jointly multiple sparse AR models
- the formulation uses a sum of 2-norm penalty on the differences between consecutive AR models
- it finds applications in exploring a common structure of time series belonging to different classes
- ADMM algorithm as an proximal method is shown to be efficient to solve the problem in large scale

- J. Songsiri, "Sparse autoregressive model estimation for learning Granger causality in time series, in *Proceedings of the 38th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2013, pp. 3198–3202.
- C. M. Alaìz, A. Barbero, and J. R. Dorronsoro, "Group fused lasso, *Artificial Neural Networks and Machine Learning*, pp. 66–73, 2013.
- N. Parikh and S. Boyd, "Proximal algorithms, *Foundations and Trends in Optimization*, vol. 1, no. 3, pp. 127–239, 2014. [Online]. Available: http://dx.doi.org/10.1561/240000003
- D. OConnor and L. Vandenberghe, "Primal-dual decomposition by operator splitting and applications to image deblurring, *SIAM Journal on Imaging Sciences*, vol. 7, no. 3, pp. 1724–1754, 2014.