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Granger causality (Granger 1969)

sparsity in coefficients Ak

(Ak)ij = 0, for k = 1, 2, . . . , p

is the characterization of Granger causality in AR model:

y(t) = A1y(t− 1) +A2y(t− 2) + · · ·+Apy(t− p) + ν(t)

• yi is not Granger-caused by yj

• knowing yj does not help to improve the prediction of yi

applications in neuroscience and
system biology

(Salvador et al. 2005, Valdes-
Sosa et al. 2005, Fujita et al.
2007, ...)
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Learning Granger Graphical Models (J. Songsiri 2013)

Problem: find Ak’s that minimize the mean-squared error and

• Ak’s contain many zeros

• common zero locations in A1, A2, . . . , Ap

Formulation: least-squares with sum-of-ℓ2-norm regularization

min
A

(1/2)∥Y −AH∥22 + λ
∑
i ̸=j

∥
[
(A1)ij (A2)ij · · · (Ap)ij

]
∥2

the problem falls into the framework of Group Lasso
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Application on classifying brain conditions

Brain under condition A Brain under condition B

• brain under two conditions may share some similar connectivity patterns due
to some normal functioning of the brain

• different conditions of the brain may lead to some different edges in the brain
connectivity
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Granger causality of multiple AR models
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• common sparsity of Ak’s in each model defines its Granger causality structure

• our goal is to learn similar Granger causality structures among all models
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Formulation for learning multiple graphical models

jointly estimate K AR models to have similar Granger-causality structures

minimize
A(1),...,A(K)

K∑
k=1

1

2
∥Y (k)−A

(k)
H

(k)∥2
2+λ1

∑
i̸=j

K∑
k=1

∥∥∥B(k)
ij

∥∥∥
2
+λ2

∑
i̸=j

K−1∑
k=1

∥∥∥B(k+1)
ij − B

(k)
ij

∥∥∥
2

• the superscript (k) denotes the kth model

• B
(k)
ij =

[
(A

(k)
1 )ij (A

(k)
2 )ij · · · (A

(k)
p )ij

]T
∈ Rp

• 1st term: least-squares error of K models

• 2nd term: promote a sparsity in each model

• 3rd term: promote similarity in any two consecutive models

• a least-squares problem with sum-of-ℓ2-norm regularization
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Group Fused Lasso framework

the estimation problem can be regarded as a Group Fused Lasso problem

minimize
x

(1/2)∥Gx− b∥22 + λ1∥Px∥2,1 + λ2∥Dx∥2,1

with variable x ∈ Rn

• G ∈ Rm×n, b ∈ Rm,P ∈ Rs×n,D ∈ Rr×n are problem parameters

• sum of 2-norm: ∥z∥2,1 =
∑L

k=1 ∥zk∥2

• D is a kronecker product of a projection and the forward difference matrix

• if λ2 = 0 and λ1 > 0, it reduces to a group lasso problem

• if λ2 > 0 and λ1 = 0, it is a class of total variation regularized problem
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Splitting technique

by splitting the cost objective into three terms

minimize
x

(1/2)∥Gx− b∥22 + λ1∥Px∥2,1 + λ2∥Dx∥2,1

and define the following functions

f(x) = (1/2)∥Gx− b∥22, g(x) = λ1∥x∥2,1, h(x) = λ2∥x∥2,1

arranged into ADMM (Alternating Direction Multiplier Method) format as

minimize f(x1) + g(x2) + h(x3)

subject to

[
P
D

]
x1 =

[
x2

x3

]
with variables x1 ∈ Rn, x2 ∈ Rs and x3 ∈ Rr

see the detail of the algorithm in Parikh and Boyd 2014, Proximal algorithms
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Computational cost in ADMM

the iteration update in ADMM involves

• basic matrix algebraic operations: addition, multiplication

• solving linear equations with positive definite matrix (using Cholesky)

• computing the proximal operator of f(x) = ∥x∥2,1 =
∑L

k=1 ∥xk∥2

(proxγf(x))k = max

{
1− γ

∥xk∥2
, 0

}
xk,

for k = 1, 2, . . . , L known as block solft thresholding operator

the algorithm applied in this problem is computationally cheap
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Numerical examples

generate 3 sparse AR models having similar Granger structures

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

Number of detected edges

Su
m

 o
f s

qu
ar

ed
 e

rro
r Group Lasso

increase

Group Fused Lasso

Group Lasso:

seperately estimate 3 models

Group Fused Lasso:

jointly estimate 3 models

• model errors are increasing as the estimated Granger network is too dense

• Group Fused Lasso yields a lower model error as λ2 increases
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ROC curves of Group Lasso VS Group Fused Lasso
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• at a fixed FPR (false positive rate), Group Fused Lasso yields a higher TPR
(true positive rate) than Group Lasso

• obtain more accurate Granger structure as λ2 increases
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Performance of ADMM algorithm

solved the problem with 30, 000 variables by ADMM in 300-400 seconds
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• Left: relative error of the primal objective

• Right: relative error of the solution
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Summary

• we have proposed a Group Fused Lasso formulation for estimating jointly
multiple sparse AR models

• the formulation uses a sum of 2-norm penalty on the differences between
consecutive AR models

• it finds applications in exploring a common structure of time series belonging
to different classes

• ADMM algorithm as an proximal method is shown to be efficient to solve the
problem in large scale
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