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Brain connectivity

• a brain connectivity or a brain network is represented by a graph

• nodes represents voxels (or ROIs)

• a brain connectivity is explained by the graph topology

• the graph topology is described by a statistical dependence measure of interest
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Dependence Measures

• data are treated as independent samples (no temporal consideration)

– correlation (covariance matrix)
– partial correlation (inverse of covariance matrix)
– structural equation modeling (path coefficient matrix)

• data are treated as time series

– cross coherence function (normalized correlation function)
– partial coherence function (normalized inverse of correlation) – often done

in frequency domain (inverse spectrum)
– dynamical causal modeling (coupling matrices)
– Granger causality (autoregressive coefficients)
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Inference methods

estimation: covariance matrix, path coefficient of SEM, correlation function,
spectrum, matrices in DCM, AR coefficients, etc.

inference methods can be roughly divided into:

• statistical tests (test if each of these measures is zero with a statistical
significance)

• sparse estimation (estimation formulation promotes sparsity in these
measures)

we pursue the latter approach by cooperating an ℓ1-minimization in the
formulation

goal: learning a zero pattern in an dependence measure
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Granger causality (Granger 1969)

sparsity in coefficients Ak

(Ak)ij = 0, for k = 1, 2, . . . , p

is the characterization of Granger causality in AR model:

y(t) = A1y(t− 1) +A2y(t− 2) + · · ·+Apy(t− p) + ν(t)

• yi is not Granger-caused by yj

• knowing yj does not help to improve the prediction of yi

applications in neuroscience and
system biology

(Salvador et al. 2005, Valdes-
Sosa et al. 2005, Fujita et al.
2007, ...)
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Learning a single Granger Graphical Model (J. Songsiri 2013)

Problem: find Ak’s that minimize the mean-squared error and

• Ak’s contain many zeros

• common zero locations in A1, A2, . . . , Ap

Formulation: least-squares with sum-of-ℓ2-norm regularization

min
A

(1/2)∥Y −AH∥22 + λ
∑
i ̸=j

∥
[
(A1)ij (A2)ij · · · (Ap)ij

]
∥2

the problem falls into the framework of Group Lasso
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Default Mode Network (A. Pongrattanakul, P. Lertkultanon and J. Songsiri 2013)

• many active nodes in vACC, MTLs and a few in MPFC and PCC/RSC

• strong connections between MTLs and PCC and vACC has a significant
connectivity with PCC

• strong connections between left and right medial temporal lobes
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Application on learning a common brain structure

Brain of subject A Brain of subject B

• brains of subjects under the same condition from a homogenous group are
assumed to have a common brain connectivity

• the connection strengths of a pair of nodes from group subjects can be
different
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Common Granger causality of multiple AR models
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• common sparsity of Ak’s in each model defines its Granger causality structure

• our goal is to learn a common Granger causality structure among all models
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Estimation Formulation

jointly estimate K AR models to have a common Granger-causality structure

reorder the variables

B
(k)
ij =

[
(A

(k)
1 )ij (A

(k)
2 )ij · · · (A

(k)
p )ij

]T
, Cij = (B

(1)
ij , B

(2)
ij , . . . , B

(K)
ij )

optimization problem:

minimize
A(1),...,A(K)

(1/2)

K∑
k=1

∥Y (k) − A
(k)

H
(k)∥2

F + λ
∑
i̸=j

∥Cij∥2

• the superscript (k) denotes the kth model

• 1st term: least-squares error of K models

• 2nd term: promote a common sparsity in all models
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Application on classifying brain conditions

Brain under condition A Brain under condition B

• brain under two conditions may share some similar connectivity patterns due
to some normal functioning of the brain

• different conditions of the brain may lead to some different edges in the brain
connectivity
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Granger causality of multiple AR models
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causality pattern
of model # 1

causality pattern
of model # 2

• common sparsity of Ak’s in each model defines its Granger causality structure

• our goal is to learn similar Granger causality structures among all models
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Estimation Formulation (J. Songsiri 2015)

jointly estimate K AR models to have similar Granger-causality structures

minimize
A(1),...,A(K)

K∑
k=1

1

2
∥Y (k)−A

(k)
H

(k)∥2
2+λ1

∑
i̸=j

K∑
k=1

∥∥∥B(k)
ij

∥∥∥
2
+λ2

∑
i̸=j

K−1∑
k=1

∥∥∥B(k+1)
ij − B

(k)
ij

∥∥∥
2

• the superscript (k) denotes the kth model

• B
(k)
ij =

[
(A

(k)
1 )ij (A

(k)
2 )ij · · · (A

(k)
p )ij

]T
∈ Rp

• 1st term: least-squares error of K models

• 2nd term: promote a sparsity in each model

• 3rd term: promote similarity in any two consecutive models

• a least-squares problem with sum-of-ℓ2-norm regularization
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Group Fused Lasso framework

the estimation problem can be regarded as a Group Fused Lasso problem

minimize
x

(1/2)∥Gx− b∥22 + λ1∥Px∥2,1 + λ2∥Dx∥2,1

with variable x ∈ Rn

• G ∈ Rm×n, b ∈ Rm,P ∈ Rs×n,D ∈ Rr×n are problem parameters

• sum of 2-norm: ∥z∥2,1 =
∑L

k=1 ∥zk∥2

• D is a kronecker product of a projection and the forward difference matrix

• if λ2 = 0 and λ1 > 0, it reduces to a group lasso problem

• if λ2 > 0 and λ1 = 0, it is a class of total variation regularized problem
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Numerical examples

generate 3 sparse AR models having similar Granger structures

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

Number of detected edges

Su
m

 o
f s

qu
ar

ed
 e

rro
r Group Lasso

increase

Group Fused Lasso

Group Lasso:
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• model errors are increasing as the estimated Granger network is too dense

• Group Fused Lasso yields a lower model error as λ2 increases
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ROC curves of Group Lasso VS Group Fused Lasso
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• at a fixed FPR (false positive rate), Group Fused Lasso yields a higher TPR
(true positive rate) than Group Lasso

• obtain more accurate Granger structure as λ2 increases
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Structural Equation Modeling (SEM)

path analysis is a special SEM that includes only the observed variables

path analysis model

Y = AY + ϵ

(multiple linear regression)

• ϵ is the model error, Y is the variable vector

• A is called the path matrix or path coefficient

• entries in the path matrix (aij) denotes a causal relation from Yj to Yi
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Two important problems in path analysis

confirmatory SEM

• causal relationship is given

• zero pattern in A is given

exploratory SEM

• to explore a causal relationship among
variables

• explore a zero pattern in A

17



Problem description

given samples of Y , we can compute the sample covariance S

the covariance of Y derived from Y = AY + ϵ is

Σ = (I −A)−1Ψ(I −A)−T , where Ψ = cov (ϵ)

goal: estimate Σ,Ψ and A so that Σ is close to S

in the sense that

d(S,Σ) = log detΣ + tr(SΣ−1)− log detS − n,

(Kullback-Leibler divergence function) is minimized
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Sparse SEM (A. Pruttiakaravanich and J. Songsiri 2016)

a convex formulation for exploratory SEM

minimize
X,A,Ψ

− log detX + tr(SX) + 2γ
∑

(i,j)/∈IA

|Aij|

subject to

[
X (I −A)T

I −A Ψ

]
⪰ 0,

0 ⪯ Ψ ⪯ αI
P (A) = 0

• α is a parameter representing a bound on covariance error

• P (A) is a linear mapping giving the prior zero constraint in A, noted by the
index set IA

•
∑

(i,j)/∈IA

|Aij| is the ℓ1-norm regularization to promote zeros in A

• if the optimal X has low rank, then Σ can be retrieved from Σ = X−1
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Effect of the percentage known zero in A

to see the effect of percentage known zero in Atrue

• generate Atrue with n = 20 and sparsity 10%.

• generate S = (I − Atrue)
−1Ψ(I − Atrue)

−T , Ψ = 0.1I

• solve sparse SEM by assuming that we know locations of zero in Atrue about

0%, 25%, 50%, 65%, 80%
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• knowing more correct zero
structure in Atrue provides the
better accuracy of our learning
causal structure method

• knowing 0% zero in Atrue

(underdetermined problem)
provides poor estimation result
since we may not obtain a true
solution
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Summary

• we have proposed a Group Fused Lasso formulation for estimating jointly
multiple sparse AR models

• the formulation uses a sum of 2-norm penalty on the differences between
consecutive AR models

• it finds applications in exploring a common structure of time series belonging
to different/common classes

• we also proposed a convex formulation for learning causal pattern in SEM

• it finds applications in exploring causal relationships among static variables

• the problem is a type of ℓ1-regularized estimation, can be solved by a convex
solver

• the accuracy of learning the true network depends on the selection of the
regularization parameter
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