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Brain connectivity

e a brain connectivity or a brain network is represented by a graph
e nodes represents voxels (or ROlIs)
e a brain connectivity is explained by the graph topology

e the graph topology is described by a statistical dependence measure of interest



Dependence Measures

e data are treated as independent samples (no temporal consideration)

— correlation (covariance matrix)
— partial correlation (inverse of covariance matrix)
— structural equation modeling (path coefficient matrix)

e data are treated as time series

— cross coherence function (normalized correlation function)

— partial coherence function (normalized inverse of correlation) — often done
in frequency domain (inverse spectrum)

— dynamical causal modeling (coupling matrices)

— Granger causality (autoregressive coefficients)



Inference methods

estimation: covariance matrix, path coefficient of SEM, correlation function,
spectrum, matrices in DCM, AR coefficients, etc.

inference methods can be roughly divided into:

e statistical tests (test if each of these measures is zero with a statistical
significance)

e sparse estimation (estimation formulation promotes sparsity in these
measures)

we pursue the latter approach by cooperating an Z1-minimization in the
formulation

goal: learning a zero pattern in an dependence measure
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Granger causality (Granger 1969)

sparsity in coefficients Ay,
(Ak)i; =0, fork=1,2,...,p
is the characterization of Granger causality in AR model:
y(t) = Ayt — 1) + Aogy(t — 2) + - + Apy(t — p) + (1)

e y,; is not Granger-caused by y;

e knowing y; does not help to improve the prediction of y;

/ g
(Salvador et al. 2005, Valdes-

Q
/ Q\Q O/.Q Sosa et al. 2005, Fujita et al.
. 2007, ...)

Q applications in neuroscience and
system biology




Learning a single Granger Graphical Model (J. Songsiri 2013)

Problem: find A.’s that minimize the mean-squared error and

e A.'s contain many zeros

e common zero locations in A, As,..., A,

Formulation: least-squares with sum-of-£5-norm regularization

min (1/2)||Y—AHH§+>\§H (A1)is (A2)i; - (Ap)ij] Il

the problem falls into the framework of Group Lasso



Default Mode Network (A. Pongrattanakul, P. Lertkultanon and J. Songsiri 2013)

e many active nodes in vVACC, MTLs and a few in MPFC and PCC/RSC

e strong connections between MTLs and PCC and vACC has a significant
connectivity with PCC

e strong connections between left and right medial temporal lobes
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Application on learning a common brain structure

AN

Brain of subject A Brain of subject B

e brains of subjects under the same condition from a homogenous group are
assumed to have a common brain connectivity

e the connection strengths of a pair of nodes from group subjects can be
different



Common Granger causality of multiple AR models

define a vector Bij = [(Al)ij <A2)ij (A )z’j
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e common sparsity of Ax's in each model defines its Granger causality structure

e our goal is to learn a common Granger causality structure among all models



Estimation Formulation

jointly estimate K AR models to have a common Granger-causality structure

reorder the variables

T
(k) _ k k k _ (p1) p2) (K)
Bij _ [(Ag ))" (Ag ))z'j (Az(j ))ij} ) Cij—(B B ., B, )

tj 1) g 0 1

optimization problem:

K
minimize (1/2) 3 [V — AVHOIL + 237 )10y
A k=1 i#]

e the superscript (¥) denotes the kth model

e 1st term: least-squares error of K models

e 2nd term: promote a common sparsity in all models
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Application on classifying brain conditions

Brain under condition A Brain under condition B

e brain under two conditions may share some similar connectivity patterns due
to some normal functioning of the brain

e different conditions of the brain may lead to some different edges in the brain
connectivity
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Granger causality of multiple AR models

causality pattern
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e common sparsity of Ax's in each model defines its Granger causality structure

e our goal is to learn similar Granger causality structures among all models
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Estimation Formulation (J. Songsiri 2015)

jointly estimate K AR models to have similar Granger-causality structures

K
minimize ||Y(k) A(k)H(k)||2—|—>\ ZZ HB
i#] k=1

‘ —1‘)\22 Z | B(k+1)

A 9

.....

e the superscript (¥) denotes the kth model

o B = [Py APy o ()] R

e 1st term: least-squares error of K models

e 2nd term: promote a sparsity in each model

e 3rd term: promote similarity in any two consecutive models

e a least-squares problem with sum-of-£5-norm regularization
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Group Fused Lasso framework

the estimation problem can be regarded as a Group Fused Lasso problem

minimize (1/2)||Gx — b||3 + \1||Px

21+ A2||Dxll2.1

with variable £ € R"

GeR™" beR™ PcR*” DcR"™ are problem parameters
_ L
sum of 2-norm: [2l|a1 = F_, [|2¢l2
D is a kronecker product of a projection and the forward difference matrix
if Ao =0 and A1 > 0, it reduces to a group lasso problem

if Ao > 0 and Ay =0, it is a class of total variation regularized problem
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Numerical examples

generate 3 sparse AR models having similar Granger structures

40,
3B W

30

Group Lasso Group Lasso:

seperately estimate 3 models

20

Group Fused Lasso:

Sum of squared error

Jointly estimate 3 models

1 1 1 1 1 J
0 100 200 300 400 500 600
Number of detected edges

e model errors are increasing as the estimated Granger network is too dense

e Group Fused Lasso yields a lower model error as Ay increases
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ROC curves of Group Lasso VS Group Fused Lasso
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e at a fixed FPR (false positive rate), Group Fused Lasso yields a higher TPR
(true positive rate) than Group Lasso

e obtain more accurate Granger structure as As increases
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Structural Equation Modeling (SEM)

path analysis is a special SEM that includes only the observed variables

General knowledge score

€3 > Y3 ais

GPA from required course path al‘la|ySiS mOdEI
Yl <€

Intelligence score

aiq

€4 > Y.

Y = AY + €

YQ < €9

ais ;
GPA from elective course (m u |t| p|e Iinear regl’eSSion)
€5 > Y5 azs

Education motivation score

e c Is the model error, Y is the variable vector
e A is called the path matrix or path coefficient

e entries in the path matrix (a;;) denotes a causal relation from Y, to Y;

16



Two important problems in path analysis

€23 Y, %
Y1 < €]

€33 Y3 Kmi

€2

Xo

A -

Xq < €]

| —>——

X3 e

confirmatory SEM
e causal relationship is given

e zero pattern in A is given

exploratory SEM

e to explore a causal relationship among
variables

e explore a zero pattern in A



Problem description

given samples of Y, we can compute the sample covariance S

the covariance of Y derived from Y = AY + € is
N=I—-A)""I—-A)""  where U = cov (¢

goal: estimate >, ¥ and A so that X is close to S

In the sense that
d(S,¥) =logdet ¥ + tr(SX™!) — logdet S — n,

(Kullback-Leibler divergence function) is minimized
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Sparse SEM (A. Pruttiakaravanich and J. Songsiri 2016)

a convex formulation for exploratory SEM

mglijlm\lijze —logdet X +tr(SX)+2y > |A;

: X I—A
subject to 7 A U >~ 0,
0=V <al
P(A)=0

e ( Is a parameter representing a bound on covariance error

e P(A) is a linear mapping giving the prior zero constraint in A, noted by the
Index set [ 4

e > |A;;l|is the £;-norm regularization to promote zeros in A
(4,5)¢ 1A

e if the optimal X has low rank, then ¥ can be retrieved from ¥ = X!
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Effect of the percentage known zero in A

to

see the effect of percentage known zero in Ai e

generate Ai.ue with n = 20 and sparsity 10%.

generate S = (I — Atme)_l\I!(I — Atrue)_T, v =0.11
solve sparse SEM by assuming that we know locations of zero in A¢.ue about
0%, 25%, 50%, 65%, 80%

—4—0% known zero

—%—25% known zero
50% known zero

—*%—65% known zero
80% known zero

0 0.2

0.4 0.6 0.8

FP rate

e knowing more correct zero

structure in A provides the
better accuracy of our learning
causal structure method

knowing 0% zero in  Aiue
(underdetermined problem)
provides poor estimation result
since we may not obtain a true
solution
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Summary

e we have proposed a Group Fused Lasso formulation for estimating jointly
multiple sparse AR models

e the formulation uses a sum of 2-norm penalty on the differences between
consecutive AR models

e it finds applications in exploring a common structure of time series belonging
to different/common classes

e we also proposed a convex formulation for learning causal pattern in SEM
e it finds applications in exploring causal relationships among static variables

e the problem is a type of /;-regularized estimation, can be solved by a convex
solver

e the accuracy of learning the true network depends on the selection of the
regularization parameter
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