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Introduction and Objective
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By knowing the relationship of the parameters in time series data, we can
explain the dynamic of the time series data.

@ explain relationship between the time series data by using the Granger
causality concept and autoregressive model.

@ estimate stable model with Granger causality constraints.
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Auto-Regressive (AR) Model

Time series data can be represented by an AR model,

y(t) =c+Ay(t — 1)+ Apy(t —2) + ... + Apy(t — p) + v(t) (1)

y(t) = (va(t), y2(2), - ya(t)) € R"

A1, Az, ..., Ap € R™" are AR coefficients (p is lag order of the model)
c € R" is a constant vector

v(t) is a Gaussian noise process with variance ¥

the observations y(1), y(2), ..., y(N) are available.

y(1),y(2), ..., y(p) are deterministic values and given.



Granger causality

“Granger causality” is a term for a specific notion of causality in
time-series analysis. The idea of Granger causality is a simple one:

X G —causes y

A variable X “Granger-causes” Y if Y can be better predicted using
the histories of both X and Y than it can using the history of only
Y.



Granger Causality

@ Apply the concept of Granger causality to AR model in equation (1)

the causality of the model can be written in linear equation form that is if
yj “not Granger-cause” to y; then

(Ak),'j:O, k:1,2,..,p

where (Ay);; denotes the (i, j) entry of Ay.

@ Granger Causality structure can be read from the zero pattern of
estimated AR coefficient matrix.



Consider AR(4) (AR model when p=4) and y(t) € R,
if y» “not Granger-cause” to y; then the model could be
yl(t) X 0 X yl(t'—].) X 0 X yl(t—2)
wd) =c+ | X X X| |[wt-1+|X X X| |y(t-2)
y3(t) X X X] |y(t—1) X X X] lys(t—2)
X 0 X [wn(t-3) X 0 X] [»(t—4)
+ X X X| |y(t=3) +|X X X| |[w(t—4)|+v(t)
X X X]| |ys(t—3) X X X]| |ys(t—4)




Maximum likelihood estimation

To estimate A and X by using maximum likelihood estimation, we solving
the problem

.. N—p
maximize

)

1
logdet X! — Sy = AH)|% (2)

when LTL = ¥~1 and the problem is equivalent to the least-squares
problem

mini}gnize |Y — AH||2 (3)
where
Y=[r+1D) y(p+2) - y(N)], (v p
r1q 1 1 ]
yip)  ylp+1) - y(N-1)
H=|y(p—=1) yp) - y(N-2)
VW) @ V)] e



Statistical test for Granger causality Analysis

The null hypothesis for Granger causality condition will be
Ho: (Ak)j =0 for k=1,2,...,p
and the Wald test is based on the following test statistic:

A —_— A _1 A
w; = B [Avar(@),-j} B;

where é,-j = ((Al);j, (Az),-j, cey (Ap),-j), 0 is the vectorization of A, and

A

Avar(f);; is the main diagonal block of a consistent estimate of the
asymptotic covariance matrix of 6.
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Statistical test for Granger causality Analysis

IDEA : if Hyis true, (Ak)ijshould equal to 0
In Wald test, H is reject if W > C

where C=F~1(1 — a) is critical value
and a = Prob(IW > () is the significance level.

A1z
IfW; >C » Non Zero
W C=9.4877 whena = 0.05andp = 3 n Zeros Structure
X 3.2486 |35.0241 | 0.1986 | 11.5292 X 0 X 0 X
0.1279 X 153.831 | 35.5729 | 3.2287 0 X X X 0
13.4569 0.608 X 15.0093 | 2.1324 X 0 X X 0
12.3471 | 21.6202 | 30.7289 X 2.2625 X X X X 0
43.4160 | 2.3035 | 2.2536 | 1.5259 X X 0 0 0 X

Under the null hypothesis that (Ax); = 0, the Wald statistic W converges

in distribution to Chi-square distribution with p degrees of freedom.
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Wald test Results

By generating y(t) = AH(t) + v(t) and the model parameter Ay are
generated by choosing some element to be equal to zero.
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[1 is intersect between non-zeros components

() is true component is zero but the estimated is non-zero

+ is true component is non-zero but the estimated is zero

and blank is intersect between zero components 12/25



AR estimation with Granger causality constraints

After knowing the Granger causality pattern, we solve this optimization
problem to estimate A with Granger causality condition.

mini}gnize |Y — AH||2

subject to  (Ax);; =0

@ The estimated model parameter is not guarantee to be stable

@ we need a stability condition.
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Stability Condition

we can write the AR model in discrete-time linear system

-Al A ... Ap_l Ap- i y(t—l) i
y(t) I 0 ... 0 0| yit-2)
y(t—1)
_ _lo 1 ... 0o o0 _
B S S ly(t—=p+1)
yE=p+D] o o o 1 o) | we-p)
A

The system is stable if and only if max |A\;(A)| < 1. The characteristic
1

polynomial have Ay as a coefficient so the condition will be nonlinear in A

14 /25



Previous Works of Stability condition

Researcher Method Difference in paper
J. Mari et al., Apply Lyapunov theory Too complicate
2000 to vector ARMA
S. L. Lacy et al,,
2003
V. Cerone et al., | Jury's test to guarantee MIMO linear system
2010 BIBO stability on
SISO LTI system
L. Buesing et al., | Apply Lyapunov theory structure of A
2012 on LDS model to estimate A
that comply with ATA </
K. Turksoy et al., | Use Gershgorin circle theory | similar
2013 on ARMAX
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Sufficient Condition for stability

Spectral radius and Induced norm

From spectral radius p(.A) = max |A;(A)| then the system is stable if
1

p(A) < 1 and by the inequality
p(A) < [ A

if assume that || A|| < 1 it will affect p(A) < 1 when ||.A]| is a induced
norm

v

We choose the infinity-norm of A to be the sufficient condition for stability.
[Alle <1

Due to structure of A
o ||All1 <1 and ||Alj2 <1 lead to meaningless which is Ay, ..., Ap_1
are equal to zero.
e [|A|lF <1 isimpossible
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We can estimate a stable model parameter with Granger causality
condition by solving this problem.

minimize Y — AH||%

(AL Ay ... Ay A,
/I 0 ... 0 0
subjectto A= |0 [ ... 0 01,
0 o0 0]
[Alls <1,
(Ak)ij =0, (i,j) c{1,....,n}x{1,...,n}

The problem is convex in quadratic form and can be solved by many solver.
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(c) no constraint (d) with Granger causality constraints

Figure 1: Positions of the eigenvalues of A on complex plane
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Figure 2: Positions of the eigenvalues of A on complex plane
with Granger causality and stability constraints
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Conclusion

ML estimation of N 2 t ‘A Estimation of AR
Time Series AR model AX Wald test €ro pattern o Subject to
Data with closed-form ond Granger causality
solution condition
Sparsity pattern of A Sparsity pattern of A
AR model with

Granger causality

All eigenvalues of A N
lie on the unite circle  Sparsity pattern of A Estimation of AR
Stable AR model Subject to Granger " ne Is the model
with Granger causality causality condition + | some eigenvalues of 4 stable?
Stability condition lie outside the unit circle
yes
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Why we have to check the stability?

(A | Mmax (A <1}

{A [ NlAlleo <1}

v
Estimated A without
/ stability condition

v
Estimated A with
stability condition
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Q&A
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