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Introduction and Objective

By knowing the relationship of the parameters in time series data, we can
explain the dynamic of the time series data.

explain relationship between the time series data by using the Granger
causality concept and autoregressive model.

estimate stable model with Granger causality constraints.
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Auto-Regressive (AR) Model

Time series data can be represented by an AR model,

y(t) = c + A1y(t − 1) + A2y(t − 2) + ...+ Apy(t − p) + v(t) (1)

y(t) = (y1(t), y2(t), ..., yn(t)) ∈ Rn

A1,A2, ...,Ap ∈ Rnxn are AR coefficients (p is lag order of the model)

c ∈ Rn is a constant vector

v(t) is a Gaussian noise process with variance Σ

the observations y(1), y(2), ..., y(N) are available.

y(1), y(2), ..., y(p) are deterministic values and given.
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Granger causality

“Granger causality” is a term for a specific notion of causality in
time-series analysis. The idea of Granger causality is a simple one:

X
G−causes−−−−−−→ Y

A variable X “Granger-causes” Y if Y can be better predicted using
the histories of both X and Y than it can using the history of only
Y .
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Granger Causality

Apply the concept of Granger causality to AR model in equation (1)

the causality of the model can be written in linear equation form that is if
yj “not Granger-cause” to yi then

(Ak)ij = 0, k = 1, 2, .., p

where (Ak)ij denotes the (i , j) entry of Ak .

Granger Causality structure can be read from the zero pattern of
estimated AR coefficient matrix.
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example

Consider AR(4) (AR model when p=4) and y(t) ∈ R3,
if y2 “not Granger-cause” to y1 then the model could bey1(t)
y2(t)
y3(t)

 = c +

X 0 X
X X X
X X X

y1(t − 1)
y2(t − 1)
y3(t − 1)

+

X 0 X
X X X
X X X

y1(t − 2)
y2(t − 2)
y3(t − 2)


+

X 0 X
X X X
X X X

y1(t − 3)
y2(t − 3)
y3(t − 3)

+

X 0 X
X X X
X X X

y1(t − 4)
y2(t − 4)
y3(t − 4)

+ v(t)

8 / 25



Maximum likelihood estimation

To estimate A and Σ by using maximum likelihood estimation, we solving
the problem

maximize
A,Σ

N − p

2
log det Σ−1 − 1

2
‖L(Y − AH)‖2

F (2)

when LTL = Σ−1 and the problem is equivalent to the least-squares
problem

minimize
A

‖Y − AH‖2
F (3)

where

Y =
[
y(p + 1) y(p + 2) · · · y(N)

]
n×(N−p)

,

H =


1 1 · · · 1

y(p) y(p + 1) · · · y(N − 1)
y(p − 1) y(p) · · · y(N − 2)

...
...

...
y(1) y(2) · · · y(N − p)


(np+1)×(N−p)
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Statistical test for Granger causality Analysis

The null hypothesis for Granger causality condition will be

H0 : (Ak)ij = 0 for k = 1, 2, . . . , p

and the Wald test is based on the following test statistic:

Wij = B̂T
ij

[
Âvar(θ̂)ij

]−1
B̂ij

where B̂ij =
(

(Â1)ij , (Â2)ij , . . . , (Âp)ij

)
, θ̂ is the vectorization of Â, and

Âvar(θ̂)ij is the main diagonal block of a consistent estimate of the

asymptotic covariance matrix of θ̂.
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Statistical test for Granger causality Analysis

X 3.2486 35.0241 0.1986 11.5292

0.1279 X 153.831 35.5729 3.2287

13.4569 0.608 X 15.0093 2.1324

12.3471 21.6202 30.7289 X 2.2625

43.4160 2.3035 2.2536 1.5259 X

X 0 X 0 X

0 X X X 0

X 0 X X 0

X X X X 0

X 0 0 0 X

C = 9.4877 when 𝛼 = 0.05 and 𝑝 = 3

If 𝑊𝑖𝑗 > C Non Zero

Zeros Structure

IDEA : if 𝐻0is true, (  𝐴𝑘)𝑖𝑗should equal to 0

In Wald test, 𝐻0 is reject if W > C

where  C = 𝐹−1(1 − 𝛼) is critical value
and 𝛼 = Prob(𝑊 > 𝐶) is the significance level.

(  𝐴𝑘)12

W

Under the null hypothesis that (Ak)ij = 0, the Wald statistic W converges
in distribution to Chi-square distribution with p degrees of freedom.
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Wald test Results

By generating y(t) = AH(t) + v(t) and the model parameter Ak are
generated by choosing some element to be equal to zero.

(a) α = 0.01 (b) α = 0.1

� is intersect between non-zeros components
© is true component is zero but the estimated is non-zero
+ is true component is non-zero but the estimated is zero
and blank is intersect between zero components 12 / 25



AR estimation with Granger causality constraints

After knowing the Granger causality pattern, we solve this optimization
problem to estimate A with Granger causality condition.

minimize
A

‖Y − AH‖2
F

subject to (Ak)ij = 0

The estimated model parameter is not guarantee to be stable

we need a stability condition.
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Stability Condition

we can write the AR model in discrete-time linear system


y(t)

y(t − 1)
...

y(t − p + 1)

 =


A1 A2 . . . Ap−1 Ap

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0


︸ ︷︷ ︸

A


y(t − 1)
y(t − 2)

...
y(t − p + 1)
y(t − p)



The system is stable if and only if max
i
|λi (A)| < 1. The characteristic

polynomial have Ak as a coefficient so the condition will be nonlinear in A
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Previous Works of Stability condition

Researcher Method Difference in paper
J. Mari et al., Apply Lyapunov theory Too complicate
2000 to vector ARMA
S. L. Lacy et al.,
2003

V. Cerone et al., Jury’s test to guarantee MIMO linear system
2010 BIBO stability on

SISO LTI system

L. Buesing et al., Apply Lyapunov theory structure of A
2012 on LDS model to estimate A

that comply with ATA ≺ I

K. Turksoy et al., Use Gershgorin circle theory similar
2013 on ARMAX
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Sufficient Condition for stability

Spectral radius and Induced norm

From spectral radius ρ(A) = max
i
|λi (A)| then the system is stable if

ρ(A) < 1 and by the inequality

ρ(A) ≤ ‖A‖

if assume that ‖A‖ < 1 it will affect ρ(A) < 1 when ‖A‖ is a induced
norm

We choose the infinity-norm of A to be the sufficient condition for stability.

‖A‖∞ ≤ 1

Due to structure of A
‖A‖1 ≤ 1 and ‖A‖2 ≤ 1 lead to meaningless which is A1, . . . ,Ap−1

are equal to zero.

‖A‖F ≤ 1 is impossible
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We can estimate a stable model parameter with Granger causality
condition by solving this problem.

minimize
A

‖Y − AH‖2
F

subject to A =


A1 A2 . . . Ap−1 Ap

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

 ,
‖A‖∞ ≤ 1,

(Ak)ij = 0, (i , j) ⊂ {1, . . . , n}x{1, . . . , n}

The problem is convex in quadratic form and can be solved by many solver.
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Results
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Figure 1: Positions of the eigenvalues of A on complex plane
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Results
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Figure 2: Positions of the eigenvalues of A on complex plane
with Granger causality and stability constraints
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Why we have to check the stability?

𝒜 |𝜆𝑚𝑎𝑥(𝒜)| < 1

𝒜 𝒜 ∞ < 1

Estimated 𝒜 without
stability condition

Estimated 𝒜 with
stability condition
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