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Graphical Models

a graphical model consists of

• nodes: represent variables of interest
here the ith node is fMRI time series at the ith voxel

• edges: explain relationships between variables
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Autoregressive Models

explain a multivariate time series by a vector AR process of order p

y(t) = A1y(t− 1) +A2y(t− 2) + · · ·+Apy(t− p) + ν(t)

y(t) ∈ Rn, Ak ∈ Rn×n, k = 1, 2, . . . , p, ν(t) is noise
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n = 6004 (number of voxels)
yk represents the time series from the kth voxel
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Granger Graphical Models (Granger 1969)

sparsity in coefficients Ak

(Ak)ij = 0, for k = 1, 2, . . . , p

is the characterization of Granger causality of AR models

• yi is not Granger-caused by yj

• knowing yj does not help to improve the prediction of yi

granger graphical model zero patterns in 

for example, 4-dimensional AR

y2 is Granger caused by y1

y4 is NOT Granger caused by y2
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Sparse Autoregressive (AR) Models

Problem: find Ak’s that minimize the sum-square error

N∑
t=p+1

‖y(t)−
p∑

k=1

Aky(t− k)‖22

• Ak’s contain many zeros (to infer Granger causality among variables)

• A1, A2, . . . , Ap have a common zero pattern

this formulation finds many applications in neuroscience and system biology

(Salvador et al. 2005, Valdes-Sosa et al. 2005, Fujita et al. 2007, ...)
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Group sparsity

stack the (i, j) entries of all Ak’s in vector Bij ∈ Rp

‖Bij‖2 = 0 =⇒ (A1)ij = (A2)ij = · · · = (Ap)ij = 0

obtain a group sparsity in Ak’s if we can enforce

‖Bij‖2 = 0, or ‖
[
(A1)ij (A2)ij · · · (Ap)ij

]
‖2 = 0

for some (i, j)
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Formulation Constrained AR Estimation

given the measurements y(1), y(2), . . . , y(N)

minimize
N∑

t=p+1
‖y(t)−

∑p
k=1Aky(t− k)‖2

subject to (A1)ij = (A2)ij = · · · = (Ap)ij = 0, (i, j) /∈ V

with variables Ak ∈ Rn×n for k = 1, 2, . . . , p

• V is the index set of a given Granger causality constraints

• the equality constraints can be eliminated, resulting in a reduced
least-squares

• the solution is then analytically obtained
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Formulation Sparse AR Estimation

given the measurements y(1), y(2), . . . , y(N)

minimize
N∑

t=p+1

‖y(t)−
p∑

k=1

Aky(t−k)‖2+λ
∑
i6=j

∥∥∥∥[(A1)ij (A2)ij · · · (Ap)ij

]∥∥∥∥
2

with variables Ak ∈ Rn×n for k = 1, 2, . . . , p

• regarded as an `1-regularized least-squares problem

• summation over (i, j) plays a role of `1-type norm

• using the `2 norm of p-tuple of (Ak)ij yields a group sparsity

• λ is called a regularization parameter (λ > 0)

a heuristic convex approach to obtain sparse AR coefficients
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Example: 20-dimensional AR of order 3

a common zero pattern of a solution A1, A2 and A3

ρ = 0.05 ρ = 0.5 ρ = 2

ρ = 5 ρ = 10 ρ = 15

as ρ increases, Ak’s contain more zeros
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Numerical method

the estimation problem can be expressed as

minimize f(x) + ρ‖x‖1

• uncontrained convex problem

• nonsmooth problem; make it challenging to solve in large scale

• suitable for ADMM algorithm; simple and fast in practice

(S. Boyd, et al. Distributed optimization and statistical learning via the
alternating direction method of multipliers, 2010)

• many approaches on choosing ρ have been proposed; BIC, cross
validation, etc.

9



Model Selection

minimize

where

topology #1 topology #2 topology #M...

minimize

subject to

sparse AR estimation

constrained AR estimation

BIC = -2 Loglikelihood + Model Complexity
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select the model that minimizes Bayes information criterion (BIC)

BIC = −2 · Loglikelihood + d logN
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Sparse AR estimation

generate 1000 time points from a sparse AR process with n = 20 and p = 3
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BIC

Cross validation

• blue squares are the correctly

identified nonzero entries

• red circles are misclassified

entries as nonzeros

• black crosses are misclassified

entries as zeros

BIC yields a smaller error than cross validation if the true model is sparse
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Receiver Operating Characteristic (ROC) curves

• Group sparse AR estimation: vary ρ

• Ridge regression: vary threshold value applied on the estimates
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Group Lasso        : N = 500

Ridge Regression: N = 500

Group Lasso        : N = 2000

Ridge Regression: N = 2000

Group Lasso        : N = 5000

Ridge Regression: N = 5000

ROC of group sparse AR estimation lies above that of ridge regression

12



fMRI time series (Feinberg et. al. 2010)
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• the data were obtained while a subject was in the resting state

• BOLD signals recorded at 6004 voxels with 1499 time samples

• reduce the number of voxels to 201 (red dots)
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Granger Graphical Models for fMRI time series

• BIC selects the AR model of order 1 and the graph density is 7%

• the link width is proportional to ‖Bij‖2

• orange color painted at the link end towards node j represents that the
node j is Granger-caused by other nodes.
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Summary

• graphical models are useful for explaining relationships in complex
systems

• a problem of learning graph topologies can be formulated as a sparse
identification problem

• to obtain a sparse model, we add an `1-type regularization to the
estimation problem

• the resulting problem is unconstrained convex but nondifferentiable

• solving the problem in large scale is done by ADMM algorithm (shown
to be efficiently fast in many applications)
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