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Graphical Models
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a graphical model consists of

• nodes: represent variables of interest
here the ith node is the number of cases in the ith state

• edges: explain relationships between variables
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Autoregressive Models

explain a multivariate time series by a vector AR process of order p

y(t) = A1y(t− 1) +A2y(t− 2) + · · ·+Apy(t− p) + ν(t)

y(t) ∈ R
n, Ak ∈ R

n×n, k = 1, 2, . . . , p, ν(t) is noise
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n = 51 (51 states in the U.S.)

y1 the number of patients in AK
y2 the number of patients in LA
... ...

y51 the number of patients in WA
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Granger Graphical Models (Granger 1969)

sparsity in coefficients Ak

(Ak)ij = 0, for k = 1, 2, . . . , p

is the characterization of Granger causality of AR models

• yi is not Granger-caused by yj

• knowing yj does not help to improve the prediction of yi

granger graphical model zero patterns in 

for example, 4-dimensional AR

y2 is Granger caused by y1

y4 is NOT Granger caused by y2
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Sparse Autoregressive (AR) Models

Problem: find Ak’s that minimize the sum-square error

N
∑

t=p+1

‖y(t)−

p
∑

k=1

Aky(t− k)‖22

• Ak’s contain many zeros (to infer Granger causality among variables)

• A1, A2, . . . , Ap have a common zero pattern

A1 A2

· · ·
Ap

this formulation finds many applications in neuroscience and system biology

(Salvador et al. 2005, Valdes-Sosa et al. 2005, Fujita et al. 2007, ...)
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Group sparsity

stack the (i, j) entries of all Ak’s in vector Bij ∈ Rp

‖Bij‖2 = 0 =⇒ (A1)ij = (A2)ij = · · · = (Ap)ij = 0

obtain a group sparsity in Ak’s if we can enforce

‖Bij‖2 = 0, or ‖
[

(A1)ij (A2)ij · · · (Ap)ij
]

‖2 = 0

for some (i, j)
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Estimation problem

given the measurements y(1), y(2), . . . , y(N)

minimize
N
∑

t=p+1

‖y(t)−

p
∑

k=1

Aky(t−k)‖2+ρ
∑

i 6=j

∥

∥

∥

∥

[

(A1)ij (A2)ij · · · (Ap)ij

]
∥

∥

∥

∥

2

with variables Ak ∈ R
n×n for k = 1, 2, . . . , p

• regarded as an ℓ1-regularized least-squares problem

• summation over (i, j) plays a role of ℓ1-type norm

• using the ℓ2 norm of p-tuple of (Ak)ij yields a group sparsity

• ρ is called a regularization parameter (ρ > 0)

a heuristic convex approach to obtain sparse AR coefficients
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Example: 20-dimensional AR of order 3

a common zero pattern of a solution A1, A2 and A3

ρ = 0.05 ρ = 0.5 ρ = 2

ρ = 5 ρ = 10 ρ = 15

as ρ increases, Ak’s contain more zeros
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Numerical method

the estimation problem can be expressed as

minimize f(x) + ρ‖x‖1

• uncontrained convex problem

• nonsmooth problem; make it challenging to solve in large scale

• suitable for ADMM algorithm; simple and fast in practice

(S. Boyd, et al. Distributed optimization and statistical learning via the

alternating direction method of multipliers, 2010)

• many approaches on choosing ρ have been proposed; BIC, cross
validation, etc.
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Sparse AR estimation

generate 1000 time points from a sparse AR process with n = 20 and p = 3

(a) True topology

error = 2.89 %

(b) ρ choosen by BIC

error = 8.42 %

(c) ρ choosen by Cross validation

• blue squares are the correctly identified nonzero entries

• red circles are misclassified entries as nonzeros

• black crosses are misclassified entries as zeros
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Google Flu Trends http://www.google.org/flutrends/
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• show the number of influenza-like illness (ILI) cases per 100,000
population (estimated by Google)

• Arkansas, Texas, Oklahoma and Louisiana are among the states that
have higher numbers of ILI cases than the mean value
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Graphical Models for Google Flu Trends Data
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• TX, OK, LA, and AR have significant influences on many states

• factors such as climate, geography and public health policies can be
taken into account to verify this result
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Summary

• graphical models are useful for explaining relationships in complex
systems

• a problem of learning graph topologies can be formulated as a sparse
identification problem

• to obtain a sparse model, we add an ℓ1-type regularization to the
estimation problem

• the resulting problem is unconstrained convex but nondifferentiable

• solving the problem in large scale is done by ADMM algorithm (shown
to be efficiently fast in many applications)
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