Learning Granger Graphical Models for Google Flu Trends Data

Pancheewa Arayacheeppreecha Jitkomut Songsiri

Department of Electrical Engineering Chulalongkorn University

Joint Seminar on Control Systems Fri Oct 26, 2012

- Granger Graphical Models
- Sparse multivariate autoregressive models
- Numerical examples

Graphical Models

a graphical model consists of

- **nodes:** represent variables of interest here the *i*th node is the number of cases in the *i*th state
- edges: explain relationships between variables

explain a multivariate time series by a vector AR process of order p

$$y(t) = A_1 y(t-1) + A_2 y(t-2) + \dots + A_p y(t-p) + \nu(t)$$

 $y(t) \in \mathbf{R}^n$, $A_k \in \mathbf{R}^{n \times n}$, $k = 1, 2, \dots, p$, $\nu(t)$ is noise

n = 51 (51 states in the U.S.)

 y_1 the number of patients in AK y_2 the number of patients in LA : :

 y_{51} the number of patients in WA

sparsity in coefficients A_k

$$(A_k)_{ij} = 0, \text{ for } k = 1, 2, \dots, p$$

is the characterization of **Granger causality** of AR models

- y_i is not *Granger-caused* by y_j
- knowing y_j does not help to improve the prediction of y_i

granger graphical model zero patterns in A_k

for example, 4-dimensional AR

 y_2 is Granger caused by y_1

 y_4 is NOT Granger caused by y_2

- Granger Graphical Models
- Sparse multivariate autoregressive models
- Numerical examples

Problem: find A_k 's that minimize the sum-square error

$$\sum_{t=p+1}^{N} \|y(t) - \sum_{k=1}^{p} A_k y(t-k)\|_2^2$$

- A_k 's contain many zeros (to infer Granger causality among variables)
- A_1, A_2, \ldots, A_p have a common zero pattern

this formulation finds many applications in neuroscience and system biology (Salvador et al. 2005, Valdes-Sosa et al. 2005, Fujita et al. 2007, ...)

Group sparsity

stack the (i, j) entries of all A_k 's in vector $B_{ij} \in \mathbf{R}^p$

$$||B_{ij}||_2 = 0 \implies (A_1)_{ij} = (A_2)_{ij} = \dots = (A_p)_{ij} = 0$$

obtain a group sparsity in A_k 's if we can enforce

$$||B_{ij}||_2 = 0$$
, or $||[(A_1)_{ij} \quad (A_2)_{ij} \quad \cdots \quad (A_p)_{ij}]||_2 = 0$

for some (i, j)

given the measurements $y(1), y(2), \ldots, y(N)$

minimize
$$\sum_{t=p+1}^{N} \|y(t) - \sum_{k=1}^{p} A_k y(t-k)\|^2 + \rho \sum_{i \neq j} \left\| \begin{bmatrix} (A_1)_{ij} & (A_2)_{ij} & \cdots & (A_p)_{ij} \end{bmatrix} \right\|_2$$

with variables $A_k \in \mathbf{R}^{n \times n}$ for $k = 1, 2, \ldots, p$

- regarded as an ℓ_1 -regularized least-squares problem
- summation over (i, j) plays a role of ℓ_1 -type norm
- using the ℓ_2 norm of *p*-tuple of $(A_k)_{ij}$ yields a *group sparsity*
- ρ is called a regularization parameter ($\rho > 0$)

a heuristic convex approach to obtain sparse AR coefficients

a common zero pattern of a solution A_1, A_2 and A_3

as ρ increases, A_k 's contain more zeros

the estimation problem can be expressed as

```
minimize f(x) + \rho \|x\|_1
```

- uncontrained convex problem
- *nonsmooth* problem; make it challenging to solve in *large scale*
- suitable for ADMM algorithm; simple and fast in practice

(S. Boyd, et al. *Distributed optimization and statistical learning via the alternating direction method of multipliers*, 2010)

- many approaches on choosing ρ have been proposed; BIC, cross validation, etc.

- Granger Graphical Models
- Sparse multivariate autoregressive models
- Numerical examples

generate 1000 time points from a sparse AR process with n = 20 and p = 3

- **blue** squares are the correctly identified nonzero entries
- red circles are misclassified entries as nonzeros
- **black** crosses are misclassified entries as zeros

http://www.google.org/flutrends/

- show the number of influenza-like illness (ILI) cases per 100,000 population (estimated by Google)
- Arkansas, Texas, Oklahoma and Louisiana are among the states that have *higher* numbers of ILI cases than the mean value

Graphical Models for Google Flu Trends Data

- TX, OK, LA, and AR have significant influences on many states
- factors such as climate, geography and public health policies can be taken into account to verify this result

Summary

- graphical models are useful for explaining relationships in complex systems
- a problem of learning graph topologies can be formulated as a sparse identification problem
- to obtain a sparse model, we add an $\ell_1\text{-type}$ regularization to the estimation problem
- the resulting problem is unconstrained convex but nondifferentiable
- solving the problem in large scale is done by ADMM algorithm (shown to be efficiently fast in many applications)