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Background

• Total Knee Arthroplasty (TKA) is usually done when articular cartilage of the
knee joint is degenerated

• Patellar resurfacing in TKA is up to surgeons

• resurface: replaced by polyethylene
patella prosthesis

• non-resurface: natural patella is kept
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Vibroarthrographic Signal (VAG)

• VAG signal is the vibration signal of the joint

• Different rubbing surfaces cause different vibration signal

• Crepitus, or the joint sound, is often heard and associated with different
rubbing surfaces

• Anecdotal evidence: different crepitus is heard in resurface and non-resurface
cases

Aim: to see if VAG signal can identify those differences
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Materials and methods

• Vibration sensor (accelerometer) attached on the mid-patella position to get
the signal

• 8 subjects with TKA

• Subjects were asked to swing their legs from 90 degrees to full extension and
back to the 90-degree posture
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VAG signals in time-domain

0 5 10 15

−5

0

5

S1−1

time (s)

a
c
c
e

le
ra

ti
o

n
 (

m
/s

2
)

0 5 10 15

−5

0

5

S7−R1

time (s)

a
c
c
e

le
ra

ti
o

n
 (

m
/s

2
)

0 5 10 15

−5

0

5

S9−L1

time (s)

a
c
c
e

le
ra

ti
o

n
 (

m
/s

2
)

0 5 10 15

−5

0

5

S9−R1

time (s)

a
c
c
e

le
ra

ti
o

n
 (

m
/s

2
)

0 5 10 15

−5

0

5

S10−L1

time (s)

a
c
c
e

le
ra

ti
o

n
 (

m
/s

2
)

0 5 10 15

−5

0

5

S10−R1

time (s)

a
c
c
e

le
ra

ti
o

n
 (

m
/s

2
)

• periodic spikes from tendon click

• signals contain many different frequency modes
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VAG signal processing pipeline

High-pass filter Spike extraction EEMD DFA

α criterion

+
IMFxraw

spike

xprocessed

• high-pass filtering for removing a trend

• remove spikes occurred from moving the joint

• perform EEMD to decompose signals into IMFs

• perform DFA to analyze the randomness of each IMF

• the processed signals are further analyzed through STFT
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Empirical Mode Decomposition (EMD)

commonly applied to nonstationary signals, e.g. EEG

x(t) =

n∑
k=1

ck(t) + rn

• assumption: a signal may contain many oscillatory modes of different freq

• decomposes into n modes of Intrinsic Mode Functions with residual rn

to obtain IMFs:

• sifting process: Interpolated upper and lower envelope and evaluate its mean

• subtract this signal by this mean

• repeat until reach (i) no. of iteration or (ii) signal has a certain number of
zero crossing
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Ensemble Empirical Mode Decomposition (EEMD)
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plots of IMFs show that randomness must be discarded using DFA
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Detrended Fluctuation Analysis (DFA)

used to explain if signal fluctuations are associated with the intrinsic correlation

C(s) = E[x(t)x(t+ s)] ≈ 1

N − s

N−s∑
t=1

x(t)x(t+ s)

• correlation should obey the power law as C(s) ∝ s−γ

• parameter γ can be indirectly estimated by fluctuation function

F (s) = s1−γ/2 = sα,

where s is a segmentation length of the signal
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Fractal scaling index (α) from DFA

some important range of are as follows

• 0.5 < α < 1: long-range power law correlation

• 0 < α < 0.5: short-range power law correlation

• α = 0.5: white noise

in this paper, IMFs with α ≤ 0.5 are discarded
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Processed signal
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• Left: raw VAG signal with motion trend

• Right: processed signal after performing EEMD and DFA
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STFT analysis of VAG signals: resurfaced
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spikes and high frequency components up to about 500 Hz
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STFT analysis of VAG signals: non-resurfaced
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• spikes and high frequency components up to about 500 Hz

• results look similar to resurface cases
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STFT analysis of VAG signals: subject 6
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different postures and conditions affect muscle force acting on the patella

• affecting the surface contact of the patella

• resulting in different gliding mechanisms

• larger amplitudes of high frequency components were observed
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STFT analysis of VAG signals: with Crepitus (joint sound)
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• different frequency components indicated different sounds that were heard

• consistency of the measurement: similar characteristics of the same knee at
different times
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Frequency band power

P1 (50-250 Hz) (W) P2 (250-450 Hz) (W)
resurface (3.92± 2.69)× 104 52.25± 51.27
non-resurface (2.20± 1.47)× 104 19.65± 17.38

no cluster of the data
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Conclusion

• no significant difference was observed in the VAG signals between the
resurface and non-resurface classes

• knee and measurement conditions affect the characteristics of the signals

• more features should be explored in further studies
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