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Background

e Total Knee Arthroplasty (TKA) is usually done when articular cartilage of the
knee joint is degenerated

e Patellar resurfacing in TKA is up to surgeons

e resurface: replaced by polyethylene
patella prosthesis

e non-resurface: natural patella is kept




Vibroarthrographic Signal (VAG)

e VAG signal is the vibration signal of the joint
e Different rubbing surfaces cause different vibration signal

e Crepitus, or the joint sound, is often heard and associated with different
rubbing surfaces

e Anecdotal evidence: different crepitus is heard in resurface and non-resurface
cases

Aim: to see if VAG signal can identify those differences



Materials and methods

e Vibration sensor (accelerometer) attached on the mid-patella position to get
the signal

e 8 subjects with TKA

e Subjects were asked to swing their legs from 90 degrees to full extension and
back to the 90-degree posture




VAG signals in time-domain

— S1-1

N

Y

E 5

5

= OWWWW

©

Q@

8 -5

(&)

© 0 5 10 15
time (s)

— S9-L1

N

Y

E 5

5

= 0

©

<@

8 -5

(&)

© 0 5 10 15
time (s)

— S10-L1

N

RY

E 5

5

= 0

©

Q@

8 -5

(&)

© 0 5 10 15
time (s)

e periodic spikes from tendon click

acceleration (m/sz) acceleration (m/sz)

acceleration (m/s?)

(¢)]

o

|
(¢)]

S7-R1

0 5 10 15

time (s)
S10-R1

time (s)

e signals contain many different frequency modes



VAG signal processing pipeline
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perform EEMD to decompose signals into IMFs
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the processed signals are further analyzed through STFT



Empirical Mode Decomposition (EMD)

commonly applied to nonstationary signals, e.g. EEG

n

o(t) =) ci(t) +

k=1

e assumption: a signal may contain many oscillatory modes of different freq

e decomposes into n modes of Intrinsic Mode Functions with residual r,,
to obtain IMFs:

e sifting process: Interpolated upper and lower envelope and evaluate its mean
e subtract this signal by this mean

e repeat until reach (i) no. of iteration or (ii) signal has a certain number of
Zero crossing



Ensemble Empirical Mode Decomposition (EEMD)

IMFs of the highpass filtered VAG signal of subject1-1
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plots of IMFs show that randomness must be discarded using DFA



Detrended Fluctuation Analysis (DFA)

used to explain if signal fluctuations are associated with the intrinsic correlation

1 —S
- > x(t)a(t+ s)

t=1

C(s) = Elz(t)z(t + )] =

e correlation should obey the power law as C(s) o< s

e parameter v can be indirectly estimated by fluctuation function
F(s)=s'77/2 =52,

where s is a segmentation length of the signal



Fractal scaling index (o) from DFA

some important range of are as follows

e 0.5 < a < 1: long-range power law correlation
e 0 < a < 0.5: short-range power law correlation

o o = 0.5: white noise

in this paper, IMFs with a < 0.5 are discarded



Processed signal

Raw signal with motion trend of subjectl-1
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o [eft: raw VAG signal with motion trend

e Right: processed signal after performing EEMD and DFA
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STFT analysis of VAG signals:

resurfaced
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spikes and high frequency components up to about 500 Hz
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STFT analysis of VAG signals: non-resurfaced
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e spikes and high frequency components up to about 500 Hz

e results look similar to resurface cases
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STFT analysis of VAG signals: subject 6
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e resulting in different gliding mechanisms

e larger amplitudes of high frequency components were observed

S6-L1

0 5 10 15
time (s)
S6-R1

0 5 10 15
time (s)

S6-R4-Lay—Assist

=+

0 5 10 15
time (s)

acceleration (m/sz) acceleration (m/sz)

acceleration (m/sz)

S6-L3-FreeFall

It AH A AN A1
0 5 10 15
time (s)
S6-R3-FreeFall

|

0 5 10 15

time (s)
S6-R5-Lay-Self

0 5 10 15

time (s)

frequency(Hz)

frequency(Hz)

frequency(Hz)

S6-L1

time(s)
-R1

5 10
time(s)
S6-R4-Lay-Assist

5 10
time(s)

frequency(Hz)

frequency(Hz)

frequency(Hz)

5 10

S6-L3-FreeFall

time(s)

S6-R3-FreeFall 7-60

time(s)

on the patella

13



STFT analysis of VAG signals: with Crepitus (joint

sound)
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Frequency band power

P1 (50-250 Hz) (W)

P2 (250-450 Hz) (W)

resurface (3.92 & 2.69) x 10*
non-resurface  (2.20 & 1.47) x 104

52.25 £51.27
19.65 £ 17.38

Signal power in different band

200 -
O resurface

~ 180 X non-resurface
E 160
)

;? 140 -

% 120+

N
it 100 -

gj o

[ 80+

&) o

% 60l S6-Lay-Self x "

Q o
- 40 S1-1 . S1-3

§ O S4-R1

M 20f x

x" X X x
0 * \O be FaY 1
0 2 4 6 8 10 12
Band power P1 (50-250 Hz) 0

no cluster of the data

15



Conclusion

e no significant difference was observed in the VAG signals between the
resurface and non-resurface classes

e knee and measurement conditions affect the characteristics of the signals

e more features should be explored in further studies
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